Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hadamard_space> ?p ?o. }
Showing items 1 to 17 of
17
with 100 items per page.
- Hadamard_space abstract "In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. It is defined to be a nonempty complete metric space where, given any points x, y, there exists a point m such that for every point z,The point m is then the midpoint of x and y: .In a Hilbert space, the above inequality is equality (with ), and in general an Hadamard space is said to be flat if the above inequality is equality. A flat Hadmard space is isomorphic to a closed convex subset of a Hilbert space. In particular, a normed space is an Hadamard space if and only if it is a Hilbert space.The geometry of Hadamard spaces resembles that of Hilbert spaces, making it a natural setting for the study of rigidity theorems. In an Hadamard space, any two points can be joined by a unique geodesic between them; in particular, it is contractible. Quite generally, if B is a bounded subset of a metric space, then the center of the closed ball of the minimum radius containing it is called the circumcenter of B. Every bounded subset of an Hadamard space is contained in the smallest closed ball (which is the same as the closure of its convex hull). If is the group of isometries of an Hadamard space leaving invariant B, then fixes the circumcenter of B. (Bruhat–Tits fixed point theorem)The basic result for a non-positively curved manifold is the Cartan–Hadamard theorem. The analog holds for an Hadamard space: a complete, connected metric space which is locally isometric to an Hadamard space has an Hadamard space as its universal cover. Its variant applies for non-positively curved orbifolds. (cf. Lurie.)Examples of Hadamard spaces are Hilbert spaces, the Poincaré disc, trees (e.g., Bruhat–Tits building), Cayley graphs of hyperbolic groups or more generally CAT(0) groups, (p, q)-space with p, q ≥ 3 and 2pq ≥ p + q, and Riemannian manifolds of nonpositive sectional curvature (e.g., symmetric spaces). An Hadamard space is precisely a complete CAT(0) space.".
- Hadamard_space thumbnail End_of_universe.jpg?width=300.
- Hadamard_space wikiPageExternalLink hadamard.pdf.
- Hadamard_space wikiPageID "2850665".
- Hadamard_space wikiPageRevisionID "569388591".
- Hadamard_space hasPhotoCollection Hadamard_space.
- Hadamard_space subject Category:Hilbert_space.
- Hadamard_space comment "In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. It is defined to be a nonempty complete metric space where, given any points x, y, there exists a point m such that for every point z,The point m is then the midpoint of x and y: .In a Hilbert space, the above inequality is equality (with ), and in general an Hadamard space is said to be flat if the above inequality is equality.".
- Hadamard_space label "Hadamard space".
- Hadamard_space label "Hadamard-Raum".
- Hadamard_space sameAs Hadamard-Raum.
- Hadamard_space sameAs m.0h3n62y.
- Hadamard_space sameAs Q5637590.
- Hadamard_space sameAs Q5637590.
- Hadamard_space wasDerivedFrom Hadamard_space?oldid=569388591.
- Hadamard_space depiction End_of_universe.jpg.
- Hadamard_space isPrimaryTopicOf Hadamard_space.