Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Handshaking_lemma> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Handshaking_lemma abstract "In graph theory, a branch of mathematics, the handshaking lemma is the statement that every finite undirected graph has an even number of vertices with odd degree. In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands.The handshaking lemma is a consequence of the degree sum formula (also sometimes called the handshaking lemma),for a graph with vertex set V and edge set E. Both results were proven by Leonhard Euler (1736) in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.The vertices of odd degree in a graph are sometimes called odd nodes or odd vertices; in this terminology, the handshaking lemma can be restated as the statement that every graph has an even number of odd nodes.".
- Handshaking_lemma thumbnail 6n-graf.svg?width=300.
- Handshaking_lemma wikiPageExternalLink E053.pdf.
- Handshaking_lemma wikiPageExternalLink item?id=AIF_1999__49_3_815_0.
- Handshaking_lemma wikiPageID "9607933".
- Handshaking_lemma wikiPageRevisionID "600194114".
- Handshaking_lemma authorlink "Leonhard Euler".
- Handshaking_lemma first "Leonhard".
- Handshaking_lemma hasPhotoCollection Handshaking_lemma.
- Handshaking_lemma last "Euler".
- Handshaking_lemma year "1736".
- Handshaking_lemma subject Category:Graph_theory.
- Handshaking_lemma subject Category:Lemmas.
- Handshaking_lemma type Abstraction100002137.
- Handshaking_lemma type Communication100033020.
- Handshaking_lemma type Lemma106751833.
- Handshaking_lemma type Lemmas.
- Handshaking_lemma type Message106598915.
- Handshaking_lemma type Proposition106750804.
- Handshaking_lemma type Statement106722453.
- Handshaking_lemma comment "In graph theory, a branch of mathematics, the handshaking lemma is the statement that every finite undirected graph has an even number of vertices with odd degree. In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands.The handshaking lemma is a consequence of the degree sum formula (also sometimes called the handshaking lemma),for a graph with vertex set V and edge set E.".
- Handshaking_lemma label "Handschlaglemma".
- Handshaking_lemma label "Handshaking lemma".
- Handshaking_lemma label "Lemat o uściskach dłoni".
- Handshaking_lemma label "Lemme des poignées de main".
- Handshaking_lemma label "Лемма о рукопожатиях".
- Handshaking_lemma sameAs Handschlaglemma.
- Handshaking_lemma sameAs Lemme_des_poignées_de_main.
- Handshaking_lemma sameAs Lemat_o_uściskach_dłoni.
- Handshaking_lemma sameAs m.09v6fzj.
- Handshaking_lemma sameAs Q954454.
- Handshaking_lemma sameAs Q954454.
- Handshaking_lemma sameAs Handshaking_lemma.
- Handshaking_lemma wasDerivedFrom Handshaking_lemma?oldid=600194114.
- Handshaking_lemma depiction 6n-graf.svg.
- Handshaking_lemma isPrimaryTopicOf Handshaking_lemma.