Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Harmonic_coordinates> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Harmonic_coordinates abstract "In Riemannian geometry, a branch of mathematics, harmonic coordinates are a coordinate system (x1,...,xn) on a Riemannian manifold each of whose coordinate functions xi is harmonic, meaning that it satisfies Laplace's equationHere Δ is the Laplace–Beltrami operator. Equivalently, regarding a coordinate system as a local diffeomorphism φ : M → Rn, the coordinate system is harmonic if and only if φ is a harmonic map of Riemannian manifolds, roughly meaning that it minimizes the elastic energy of "stretching" M into Rn. The elastic energy is expressed via the Dirichlet energy functionalIn two dimensions, harmonic coordinates have been well understood for more than a century, and are closely related to isothermal coordinates, the latter being a special case of the former. Harmonic coordinates in higher dimensions were developed initially in the context of general relativity by Einstein (1916) (see harmonic coordinate condition). They were then introduced into Riemannian geometry by Sabitov & Šefel (1976) and later were studied by DeTurck & Kazdan (1981). The essential motivation for introducing harmonic coordinate systems is that the metric tensor is especially smooth when written in these coordinate systems.Harmonic coordinates are characterized in terms of the Christoffel symbols by means of the relationand indeed, for any coordinate system at all,Harmonic coordinates always exist (locally), a result which follows easily from standard results on the existence and regularity of solutions of elliptic partial differential equations. In particular, the equationhas a solution in a ball around any given point p, such that uj(p) and are all prescribed.The basic regularity theorem concerning the metric in harmonic coordinates is that if the components of the metric are in the Hölder space Ck,α when expressed in some coordinate system, then they are in that same Hölder space when expressed in harmonic coordinates.In general relativity, harmonic coordinates are solutions of the wave equation instead of the Laplace . This is known as the harmonic coordinate condition in physics.".
- Harmonic_coordinates wikiPageExternalLink R3.pdf.
- Harmonic_coordinates wikiPageExternalLink item?id=ASENS_1981_4_14_3_249_0.
- Harmonic_coordinates wikiPageID "7217102".
- Harmonic_coordinates wikiPageRevisionID "544553686".
- Harmonic_coordinates hasPhotoCollection Harmonic_coordinates.
- Harmonic_coordinates subject Category:Harmonic_functions.
- Harmonic_coordinates subject Category:Riemannian_geometry.
- Harmonic_coordinates type Abstraction100002137.
- Harmonic_coordinates type Function113783816.
- Harmonic_coordinates type HarmonicFunctions.
- Harmonic_coordinates type MathematicalRelation113783581.
- Harmonic_coordinates type Relation100031921.
- Harmonic_coordinates comment "In Riemannian geometry, a branch of mathematics, harmonic coordinates are a coordinate system (x1,...,xn) on a Riemannian manifold each of whose coordinate functions xi is harmonic, meaning that it satisfies Laplace's equationHere Δ is the Laplace–Beltrami operator.".
- Harmonic_coordinates label "Coordonnées harmoniques".
- Harmonic_coordinates label "Harmonic coordinates".
- Harmonic_coordinates sameAs Coordonnées_harmoniques.
- Harmonic_coordinates sameAs m.09gfrcd.
- Harmonic_coordinates sameAs Q2996688.
- Harmonic_coordinates sameAs Q2996688.
- Harmonic_coordinates sameAs Harmonic_coordinates.
- Harmonic_coordinates wasDerivedFrom Harmonic_coordinates?oldid=544553686.
- Harmonic_coordinates isPrimaryTopicOf Harmonic_coordinates.