Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hausdorff_measure> ?p ?o. }
Showing items 1 to 38 of
38
with 100 items per page.
- Hausdorff_measure abstract "In mathematics a Hausdorff measure is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in Rn or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. The one-dimensional Hausdorff measure of a simple curve in Rn is equal to the length of the curve. Likewise, the two dimensional Hausdorff measure of a measurable subset of R2 is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes counting, length, and area. It also generalizes volume. In fact, there are d-dimensional Hausdorff measures for any d ≥ 0, which is not necessarily an integer. These measures are fundamental in geometric measure theory. They appear naturally in harmonic analysis or potential theory.".
- Hausdorff_measure wikiPageExternalLink 2007PrGeo..22..451Y.
- Hausdorff_measure wikiPageExternalLink www.encyclopediaofmath.org.
- Hausdorff_measure wikiPageExternalLink Hausdorff_dimension.
- Hausdorff_measure wikiPageExternalLink Hausdorff_measure.
- Hausdorff_measure wikiPageID "504109".
- Hausdorff_measure wikiPageRevisionID "603130052".
- Hausdorff_measure hasPhotoCollection Hausdorff_measure.
- Hausdorff_measure subject Category:Dimension_theory.
- Hausdorff_measure subject Category:Fractals.
- Hausdorff_measure subject Category:Measures_(measure_theory).
- Hausdorff_measure subject Category:Metric_geometry.
- Hausdorff_measure type Abstraction100002137.
- Hausdorff_measure type Cognition100023271.
- Hausdorff_measure type Form105930736.
- Hausdorff_measure type Fractal105931152.
- Hausdorff_measure type Fractals.
- Hausdorff_measure type PsychologicalFeature100023100.
- Hausdorff_measure type Structure105726345.
- Hausdorff_measure comment "In mathematics a Hausdorff measure is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in Rn or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. The one-dimensional Hausdorff measure of a simple curve in Rn is equal to the length of the curve.".
- Hausdorff_measure label "Hausdorff measure".
- Hausdorff_measure label "Hausdorff-Maß".
- Hausdorff_measure label "Hausdorffmaat".
- Hausdorff_measure label "Medida de Hausdorff".
- Hausdorff_measure label "Mesure de Hausdorff".
- Hausdorff_measure label "Miara Hausdorffa".
- Hausdorff_measure label "Мера Хаусдорфа".
- Hausdorff_measure sameAs Hausdorff-Maß.
- Hausdorff_measure sameAs Mesure_de_Hausdorff.
- Hausdorff_measure sameAs Hausdorffmaat.
- Hausdorff_measure sameAs Miara_Hausdorffa.
- Hausdorff_measure sameAs Medida_de_Hausdorff.
- Hausdorff_measure sameAs m.043tvjm.
- Hausdorff_measure sameAs Q1591095.
- Hausdorff_measure sameAs Q1591095.
- Hausdorff_measure sameAs Hausdorff_measure.
- Hausdorff_measure wasDerivedFrom Hausdorff_measure?oldid=603130052.
- Hausdorff_measure isPrimaryTopicOf Hausdorff_measure.