Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Haynsworth_inertia_additivity_formula> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Haynsworth_inertia_additivity_formula abstract "In mathematics, the Haynsworth inertia additivity formula, discovered by Emilie Virginia Haynsworth (1916–1985), concerns the number of positive, negative, and zero eigenvalues of a Hermitian matrix and of block matrices into which it is partitioned.The inertia of a Hermitian matrix H is defined as the ordered triple whose components are respectively the numbers of positive, negative, and zero eigenvalues of H. Haynsworth considered a partitioned Hermitian matrix where H11 is nonsingular and H12* is the conjugate transpose of H12. The formula states:[1] where H/H11 is the Schur complement of H11 in H:".
- Haynsworth_inertia_additivity_formula wikiPageExternalLink v=onepage&q=haynsworth%20inertia&f=false.
- Haynsworth_inertia_additivity_formula wikiPageID "31575765".
- Haynsworth_inertia_additivity_formula wikiPageRevisionID "539008588".
- Haynsworth_inertia_additivity_formula hasPhotoCollection Haynsworth_inertia_additivity_formula.
- Haynsworth_inertia_additivity_formula subject Category:Linear_algebra.
- Haynsworth_inertia_additivity_formula subject Category:Matrix_theory.
- Haynsworth_inertia_additivity_formula subject Category:Theorems_in_algebra.
- Haynsworth_inertia_additivity_formula type Abstraction100002137.
- Haynsworth_inertia_additivity_formula type Communication100033020.
- Haynsworth_inertia_additivity_formula type Message106598915.
- Haynsworth_inertia_additivity_formula type Proposition106750804.
- Haynsworth_inertia_additivity_formula type Statement106722453.
- Haynsworth_inertia_additivity_formula type Theorem106752293.
- Haynsworth_inertia_additivity_formula type TheoremsInAlgebra.
- Haynsworth_inertia_additivity_formula comment "In mathematics, the Haynsworth inertia additivity formula, discovered by Emilie Virginia Haynsworth (1916–1985), concerns the number of positive, negative, and zero eigenvalues of a Hermitian matrix and of block matrices into which it is partitioned.The inertia of a Hermitian matrix H is defined as the ordered triple whose components are respectively the numbers of positive, negative, and zero eigenvalues of H.".
- Haynsworth_inertia_additivity_formula label "Haynsworth inertia additivity formula".
- Haynsworth_inertia_additivity_formula sameAs m.0glsl8v.
- Haynsworth_inertia_additivity_formula sameAs Q5687106.
- Haynsworth_inertia_additivity_formula sameAs Q5687106.
- Haynsworth_inertia_additivity_formula sameAs Haynsworth_inertia_additivity_formula.
- Haynsworth_inertia_additivity_formula wasDerivedFrom Haynsworth_inertia_additivity_formula?oldid=539008588.
- Haynsworth_inertia_additivity_formula isPrimaryTopicOf Haynsworth_inertia_additivity_formula.