Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Highly_structured_ring_spectrum> ?p ?o. }
Showing items 1 to 19 of
19
with 100 items per page.
- Highly_structured_ring_spectrum abstract "In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.See also: Ring spectrum".
- Highly_structured_ring_spectrum wikiPageExternalLink 0903.2813.
- Highly_structured_ring_spectrum wikiPageExternalLink higheralgebra.pdf.
- Highly_structured_ring_spectrum wikiPageExternalLink BOOKSMaster.html.
- Highly_structured_ring_spectrum wikiPageExternalLink MMSS.pdf.
- Highly_structured_ring_spectrum wikiPageExternalLink SymSpec.pdf.
- Highly_structured_ring_spectrum wikiPageExternalLink comparison.pdf.
- Highly_structured_ring_spectrum wikiPageID "27342975".
- Highly_structured_ring_spectrum wikiPageRevisionID "604007997".
- Highly_structured_ring_spectrum hasPhotoCollection Highly_structured_ring_spectrum.
- Highly_structured_ring_spectrum subject Category:Algebraic_topology.
- Highly_structured_ring_spectrum subject Category:Homotopy_theory.
- Highly_structured_ring_spectrum comment "In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.See also: Ring spectrum".
- Highly_structured_ring_spectrum label "Highly structured ring spectrum".
- Highly_structured_ring_spectrum sameAs m.0by1kcp.
- Highly_structured_ring_spectrum sameAs Q16154730.
- Highly_structured_ring_spectrum sameAs Q16154730.
- Highly_structured_ring_spectrum wasDerivedFrom Highly_structured_ring_spectrum?oldid=604007997.
- Highly_structured_ring_spectrum isPrimaryTopicOf Highly_structured_ring_spectrum.