Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hilbert_class_field> ?p ?o. }
Showing items 1 to 18 of
18
with 100 items per page.
- Hilbert_class_field abstract "In algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K.In this context, the Hilbert class field of K is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of K. That is, every real embedding of K extends to a real embedding of E (rather than to a complex embedding of E).".
- Hilbert_class_field wikiPageExternalLink ?PPN=PPN235181684_0063&DMDID=dmdlog7.
- Hilbert_class_field wikiPageExternalLink )..
- Hilbert_class_field wikiPageID "3021036".
- Hilbert_class_field wikiPageRevisionID "560377150".
- Hilbert_class_field hasPhotoCollection Hilbert_class_field.
- Hilbert_class_field id "2870".
- Hilbert_class_field title "Existence of Hilbert class field".
- Hilbert_class_field subject Category:Class_field_theory.
- Hilbert_class_field comment "In algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K.In this context, the Hilbert class field of K is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of K.".
- Hilbert_class_field label "Corps de classes de Hilbert".
- Hilbert_class_field label "Hilbert class field".
- Hilbert_class_field sameAs Corps_de_classes_de_Hilbert.
- Hilbert_class_field sameAs m.08l12f.
- Hilbert_class_field sameAs Q2916820.
- Hilbert_class_field sameAs Q2916820.
- Hilbert_class_field wasDerivedFrom Hilbert_class_field?oldid=560377150.
- Hilbert_class_field isPrimaryTopicOf Hilbert_class_field.