Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hilbert_number> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Hilbert_number abstract "In number theory, a Hilbert number is defined as a positive integer of the form 4n + 1 (Flannery & Flannery (2000, p. 35)). The Hilbert numbers were named after David Hilbert.The integer sequence of Hilbert numbers is 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, … (sequence A016813 in OEIS). A Hilbert prime is a Hilbert number that is not divisible by a smaller Hilbert number (other than 1). The sequence of Hilbert primes is 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, ... (OEIS A057948). Note that Hilbert primes do not have to be prime numbers; for example, 21 is a composite Hilbert prime. It follows from multiplication modulo 4 that a Hilbert prime is either a prime number of form 4n + 1 (called a Pythagorean prime), or a semiprime of form (4a + 3) × (4b + 3).".
- Hilbert_number wikiPageID "15626235".
- Hilbert_number wikiPageRevisionID "570397727".
- Hilbert_number hasPhotoCollection Hilbert_number.
- Hilbert_number title "Hilbert Number".
- Hilbert_number urlname "HilbertNumber".
- Hilbert_number subject Category:Hilbert's_problems.
- Hilbert_number subject Category:Integer_sequences.
- Hilbert_number type Abstraction100002137.
- Hilbert_number type Arrangement107938773.
- Hilbert_number type Attribute100024264.
- Hilbert_number type Condition113920835.
- Hilbert_number type Difficulty114408086.
- Hilbert_number type Group100031264.
- Hilbert_number type Hilbert'sProblems.
- Hilbert_number type IntegerSequences.
- Hilbert_number type Ordering108456993.
- Hilbert_number type Problem114410605.
- Hilbert_number type Sequence108459252.
- Hilbert_number type Series108457976.
- Hilbert_number type State100024720.
- Hilbert_number comment "In number theory, a Hilbert number is defined as a positive integer of the form 4n + 1 (Flannery & Flannery (2000, p. 35)). The Hilbert numbers were named after David Hilbert.The integer sequence of Hilbert numbers is 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, … (sequence A016813 in OEIS). A Hilbert prime is a Hilbert number that is not divisible by a smaller Hilbert number (other than 1). The sequence of Hilbert primes is 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, ... (OEIS A057948).".
- Hilbert_number label "Hilbert number".
- Hilbert_number label "Número de Hilbert".
- Hilbert_number label "希尔伯特数".
- Hilbert_number sameAs Número_de_Hilbert.
- Hilbert_number sameAs m.03mj3c1.
- Hilbert_number sameAs Q1440989.
- Hilbert_number sameAs Q1440989.
- Hilbert_number sameAs Hilbert_number.
- Hilbert_number wasDerivedFrom Hilbert_number?oldid=570397727.
- Hilbert_number isPrimaryTopicOf Hilbert_number.