Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hjalmar_Ekdal_topology> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- Hjalmar_Ekdal_topology abstract "In mathematics, the Hjalmar Ekdal topology is a special example in the theory of topological spaces.The Hjalmar Ekdal topology consists of N* (the set of positive integers) together with the collection of all subsets of N* in which every odd member is accompanied by its even successor. Examples: {2}, {6, 9, 10}If all such subsets are declared "open", the "closed" subsets are consequently those in which every even member is accompanied by its odd predecessor.It is not compact, but it is locally compact, paracompact and second countable.".
- Hjalmar_Ekdal_topology wikiPageID "10014634".
- Hjalmar_Ekdal_topology wikiPageRevisionID "537447969".
- Hjalmar_Ekdal_topology hasPhotoCollection Hjalmar_Ekdal_topology.
- Hjalmar_Ekdal_topology subject Category:Topological_spaces.
- Hjalmar_Ekdal_topology type Abstraction100002137.
- Hjalmar_Ekdal_topology type Attribute100024264.
- Hjalmar_Ekdal_topology type MathematicalSpace108001685.
- Hjalmar_Ekdal_topology type Set107999699.
- Hjalmar_Ekdal_topology type Space100028651.
- Hjalmar_Ekdal_topology type TopologicalSpaces.
- Hjalmar_Ekdal_topology comment "In mathematics, the Hjalmar Ekdal topology is a special example in the theory of topological spaces.The Hjalmar Ekdal topology consists of N* (the set of positive integers) together with the collection of all subsets of N* in which every odd member is accompanied by its even successor.".
- Hjalmar_Ekdal_topology label "Hjalmar Ekdal topology".
- Hjalmar_Ekdal_topology label "Topologia de Hjalmar Ekdal".
- Hjalmar_Ekdal_topology sameAs Topologia_de_Hjalmar_Ekdal.
- Hjalmar_Ekdal_topology sameAs m.02pzv98.
- Hjalmar_Ekdal_topology sameAs Q16513523.
- Hjalmar_Ekdal_topology sameAs Q16513523.
- Hjalmar_Ekdal_topology sameAs Hjalmar_Ekdal_topology.
- Hjalmar_Ekdal_topology wasDerivedFrom Hjalmar_Ekdal_topology?oldid=537447969.
- Hjalmar_Ekdal_topology isPrimaryTopicOf Hjalmar_Ekdal_topology.