Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hopf_manifold> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- Hopf_manifold abstract "In complex geometry, a Hopf manifold (Hopf 1948) is obtainedas a quotient of the complex vector space(with zero deleted) by a free action of the group ofintegers, with the generator of acting by holomorphic contractions. Here, a holomorphic contractionis a map such that a sufficiently big iteration puts any given compact subset onto an arbitrarily small neighbourhood of 0. Two dimensional Hopf manifolds are called Hopf surfaces.".
- Hopf_manifold wikiPageID "7016707".
- Hopf_manifold wikiPageRevisionID "565547229".
- Hopf_manifold first "L.".
- Hopf_manifold hasPhotoCollection Hopf_manifold.
- Hopf_manifold id "H/h110270".
- Hopf_manifold last "Ornea".
- Hopf_manifold subject Category:Complex_manifolds.
- Hopf_manifold type Artifact100021939.
- Hopf_manifold type ComplexManifolds.
- Hopf_manifold type Conduit103089014.
- Hopf_manifold type Manifold103717750.
- Hopf_manifold type Object100002684.
- Hopf_manifold type Passage103895293.
- Hopf_manifold type PhysicalEntity100001930.
- Hopf_manifold type Pipe103944672.
- Hopf_manifold type Tube104493505.
- Hopf_manifold type Way104564698.
- Hopf_manifold type Whole100003553.
- Hopf_manifold type YagoGeoEntity.
- Hopf_manifold type YagoPermanentlyLocatedEntity.
- Hopf_manifold comment "In complex geometry, a Hopf manifold (Hopf 1948) is obtainedas a quotient of the complex vector space(with zero deleted) by a free action of the group ofintegers, with the generator of acting by holomorphic contractions. Here, a holomorphic contractionis a map such that a sufficiently big iteration puts any given compact subset onto an arbitrarily small neighbourhood of 0. Two dimensional Hopf manifolds are called Hopf surfaces.".
- Hopf_manifold label "Hopf manifold".
- Hopf_manifold sameAs m.0h0gpw.
- Hopf_manifold sameAs Q5900503.
- Hopf_manifold sameAs Q5900503.
- Hopf_manifold sameAs Hopf_manifold.
- Hopf_manifold wasDerivedFrom Hopf_manifold?oldid=565547229.
- Hopf_manifold isPrimaryTopicOf Hopf_manifold.