Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hopfian_group> ?p ?o. }
Showing items 1 to 15 of
15
with 100 items per page.
- Hopfian_group abstract "In mathematics, a Hopfian group is a group G for which every epimorphismG → Gis an isomorphism. Equivalently, a group is Hopfian if and only if it is not isomorphic to any of its proper quotients. A group G is co-Hopfian if every monomorphismG → Gis an isomorphism. Equivalently, G is not isomorphic to any of its proper subgroups.".
- Hopfian_group wikiPageExternalLink n067060.htm.
- Hopfian_group wikiPageExternalLink HopfianGroup.html.
- Hopfian_group wikiPageID "11486001".
- Hopfian_group wikiPageRevisionID "578489088".
- Hopfian_group hasPhotoCollection Hopfian_group.
- Hopfian_group subject Category:Infinite_group_theory.
- Hopfian_group comment "In mathematics, a Hopfian group is a group G for which every epimorphismG → Gis an isomorphism. Equivalently, a group is Hopfian if and only if it is not isomorphic to any of its proper quotients. A group G is co-Hopfian if every monomorphismG → Gis an isomorphism. Equivalently, G is not isomorphic to any of its proper subgroups.".
- Hopfian_group label "Hopfian group".
- Hopfian_group label "霍普夫群".
- Hopfian_group sameAs m.02rfh2s.
- Hopfian_group sameAs Q5900529.
- Hopfian_group sameAs Q5900529.
- Hopfian_group wasDerivedFrom Hopfian_group?oldid=578489088.
- Hopfian_group isPrimaryTopicOf Hopfian_group.