Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hyperbolic_group> ?p ?o. }
Showing items 1 to 38 of
38
with 100 items per page.
- Hyperbolic_group abstract "In group theory, a hyperbolic group, also known as a word hyperbolic group, Gromov hyperbolic group, negatively curved group is a finitely generated group equipped with a word metric satisfying certain properties characteristic of hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov in the early 1980s. He noticed that many results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface do not rely either on it having dimension two or even on being a manifold and hold in much more general context. In a very influential paper from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.".
- Hyperbolic_group thumbnail Delta_thin_triangle_condition.svg?width=300.
- Hyperbolic_group wikiPageID "3172817".
- Hyperbolic_group wikiPageRevisionID "596388093".
- Hyperbolic_group caption "The δ-slim triangle condition".
- Hyperbolic_group hasPhotoCollection Hyperbolic_group.
- Hyperbolic_group height "155".
- Hyperbolic_group id "p/g110240".
- Hyperbolic_group imageLeft "30".
- Hyperbolic_group imageWidth "200".
- Hyperbolic_group title "Gromov hyperbolic space".
- Hyperbolic_group width "230".
- Hyperbolic_group subject Category:Combinatorics_on_words.
- Hyperbolic_group subject Category:Geometric_group_theory.
- Hyperbolic_group subject Category:Metric_geometry.
- Hyperbolic_group subject Category:Properties_of_groups.
- Hyperbolic_group type Abstraction100002137.
- Hyperbolic_group type Possession100032613.
- Hyperbolic_group type PropertiesOfGroups.
- Hyperbolic_group type Property113244109.
- Hyperbolic_group type Relation100031921.
- Hyperbolic_group comment "In group theory, a hyperbolic group, also known as a word hyperbolic group, Gromov hyperbolic group, negatively curved group is a finitely generated group equipped with a word metric satisfying certain properties characteristic of hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov in the early 1980s.".
- Hyperbolic_group label "Groupe hyperbolique".
- Hyperbolic_group label "Hyperbolic group".
- Hyperbolic_group label "Hyperbolische Gruppe".
- Hyperbolic_group label "Hyperbolische groep".
- Hyperbolic_group label "Гиперболическая группа".
- Hyperbolic_group label "雙曲群".
- Hyperbolic_group sameAs Hyperbolische_Gruppe.
- Hyperbolic_group sameAs Groupe_hyperbolique.
- Hyperbolic_group sameAs Hyperbolische_groep.
- Hyperbolic_group sameAs m.08w_pv.
- Hyperbolic_group sameAs Q81194.
- Hyperbolic_group sameAs Q81194.
- Hyperbolic_group sameAs Hyperbolic_group.
- Hyperbolic_group wasDerivedFrom Hyperbolic_group?oldid=596388093.
- Hyperbolic_group depiction Delta_thin_triangle_condition.svg.
- Hyperbolic_group isPrimaryTopicOf Hyperbolic_group.