Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hyperbolization_theorem> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- Hyperbolization_theorem abstract "In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.".
- Hyperbolization_theorem wikiPageExternalLink books?id=pVObtYVehxIC.
- Hyperbolization_theorem wikiPageExternalLink books?isbn=0125069804.
- Hyperbolization_theorem wikiPageExternalLink ICM1983.1.
- Hyperbolization_theorem wikiPageExternalLink SDG.
- Hyperbolization_theorem wikiPageID "9155837".
- Hyperbolization_theorem wikiPageRevisionID "557856178".
- Hyperbolization_theorem hasPhotoCollection Hyperbolization_theorem.
- Hyperbolization_theorem last "Thurston".
- Hyperbolization_theorem year "1986".
- Hyperbolization_theorem year "1998".
- Hyperbolization_theorem subject Category:3-manifolds.
- Hyperbolization_theorem subject Category:Hyperbolic_geometry.
- Hyperbolization_theorem subject Category:Theorems_in_geometry.
- Hyperbolization_theorem type Abstraction100002137.
- Hyperbolization_theorem type Communication100033020.
- Hyperbolization_theorem type Message106598915.
- Hyperbolization_theorem type Proposition106750804.
- Hyperbolization_theorem type Statement106722453.
- Hyperbolization_theorem type Theorem106752293.
- Hyperbolization_theorem type TheoremsInGeometry.
- Hyperbolization_theorem comment "In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.".
- Hyperbolization_theorem label "Hyperbolization theorem".
- Hyperbolization_theorem sameAs m.0gh7t5x.
- Hyperbolization_theorem sameAs Q5957808.
- Hyperbolization_theorem sameAs Q5957808.
- Hyperbolization_theorem sameAs Hyperbolization_theorem.
- Hyperbolization_theorem wasDerivedFrom Hyperbolization_theorem?oldid=557856178.
- Hyperbolization_theorem isPrimaryTopicOf Hyperbolization_theorem.