Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hyperfinite_type_II_factor> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Hyperfinite_type_II_factor abstract "In mathematics, there are up to isomorphism exactly two separably acting hyperfinite type II factors; one infinite and one finite. Murray and von Neumann proved that up to isomorphism there is a unique von Neumann algebra that is a factor of type II1 and also hyperfinite; it is called the hyperfinite type II1 factor.There are an uncountable number of other factors of type II1. Connes proved that the infinite one is also unique.".
- Hyperfinite_type_II_factor wikiPageExternalLink sici?sici=0003-486X%28194310%292%3A44%3A4%3C716%3AOROOI%3E2.0.CO%3B2-O.
- Hyperfinite_type_II_factor wikiPageExternalLink sici?sici=0003-486X%28197607%292%3A104%3A1%3C73%3ACOIFC%3E2.0.CO%3B2-V.
- Hyperfinite_type_II_factor wikiPageID "972868".
- Hyperfinite_type_II_factor wikiPageRevisionID "562601176".
- Hyperfinite_type_II_factor hasPhotoCollection Hyperfinite_type_II_factor.
- Hyperfinite_type_II_factor subject Category:Von_Neumann_algebras.
- Hyperfinite_type_II_factor type Abstraction100002137.
- Hyperfinite_type_II_factor type Algebra106012726.
- Hyperfinite_type_II_factor type Cognition100023271.
- Hyperfinite_type_II_factor type Content105809192.
- Hyperfinite_type_II_factor type Discipline105996646.
- Hyperfinite_type_II_factor type KnowledgeDomain105999266.
- Hyperfinite_type_II_factor type Mathematics106000644.
- Hyperfinite_type_II_factor type PsychologicalFeature100023100.
- Hyperfinite_type_II_factor type PureMathematics106003682.
- Hyperfinite_type_II_factor type Science105999797.
- Hyperfinite_type_II_factor type VonNeumannAlgebras.
- Hyperfinite_type_II_factor comment "In mathematics, there are up to isomorphism exactly two separably acting hyperfinite type II factors; one infinite and one finite. Murray and von Neumann proved that up to isomorphism there is a unique von Neumann algebra that is a factor of type II1 and also hyperfinite; it is called the hyperfinite type II1 factor.There are an uncountable number of other factors of type II1. Connes proved that the infinite one is also unique.".
- Hyperfinite_type_II_factor label "Hiperskończony faktor typu II1".
- Hyperfinite_type_II_factor label "Hyperfinite type II factor".
- Hyperfinite_type_II_factor sameAs Hiperskończony_faktor_typu_II1.
- Hyperfinite_type_II_factor sameAs m.03vnl5.
- Hyperfinite_type_II_factor sameAs Q5958003.
- Hyperfinite_type_II_factor sameAs Q5958003.
- Hyperfinite_type_II_factor sameAs Hyperfinite_type_II_factor.
- Hyperfinite_type_II_factor wasDerivedFrom Hyperfinite_type_II_factor?oldid=562601176.
- Hyperfinite_type_II_factor isPrimaryTopicOf Hyperfinite_type_II_factor.