Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Hyperplane> ?p ?o. }
Showing items 1 to 41 of
41
with 100 items per page.
- Hyperplane abstract "In geometry, as a plane has one less dimension than space, a hyperplane is a subspace of one dimension less than its ambient space.A hyperplane of an n-dimensional space is a flat subset with dimension n − 1. By its nature, it separates the space into two half spaces.".
- Hyperplane wikiPageID "99862".
- Hyperplane wikiPageRevisionID "598526043".
- Hyperplane hasPhotoCollection Hyperplane.
- Hyperplane title "Flat".
- Hyperplane title "Hyperplane".
- Hyperplane urlname "Flat".
- Hyperplane urlname "Hyperplane".
- Hyperplane subject Category:Affine_geometry.
- Hyperplane subject Category:Euclidean_geometry.
- Hyperplane subject Category:Linear_algebra.
- Hyperplane subject Category:Projective_geometry.
- Hyperplane comment "In geometry, as a plane has one less dimension than space, a hyperplane is a subspace of one dimension less than its ambient space.A hyperplane of an n-dimensional space is a flat subset with dimension n − 1. By its nature, it separates the space into two half spaces.".
- Hyperplane label "Hiperplano".
- Hyperplane label "Hiperplano".
- Hyperplane label "Hiperpłaszczyzna".
- Hyperplane label "Hyperebene".
- Hyperplane label "Hyperplan".
- Hyperplane label "Hyperplane".
- Hyperplane label "Hypervlak".
- Hyperplane label "Iperpiano".
- Hyperplane label "Гиперплоскость".
- Hyperplane label "مستوي فائق".
- Hyperplane label "超平面".
- Hyperplane label "超平面".
- Hyperplane sameAs Nadrovina.
- Hyperplane sameAs Hyperebene.
- Hyperplane sameAs Hiperplano.
- Hyperplane sameAs Hiperplano.
- Hyperplane sameAs Hyperplan.
- Hyperplane sameAs Iperpiano.
- Hyperplane sameAs 超平面.
- Hyperplane sameAs 초평면_(수학).
- Hyperplane sameAs Hypervlak.
- Hyperplane sameAs Hiperpłaszczyzna.
- Hyperplane sameAs Hiperplano.
- Hyperplane sameAs m.0pgkv.
- Hyperplane sameAs Q657586.
- Hyperplane sameAs Q657586.
- Hyperplane wasDerivedFrom Hyperplane?oldid=598526043.
- Hyperplane isPrimaryTopicOf Hyperplane.