Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Idempotent_element> ?p ?o. }
Showing items 1 to 16 of
16
with 100 items per page.
- Idempotent_element abstract "In abstract algebra, an element x of a set with a binary operation ∗ is called an idempotent element (or just an idempotent) if x ∗ x = x. This reflects the idempotence of the binary operation on that particular element.Idempotents are especially prominent in ring theory. For general rings, elements idempotent under multiplication are tied with decompositions of modules, as well as to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication.".
- Idempotent_element wikiPageExternalLink idempotent.
- Idempotent_element wikiPageExternalLink index.html.
- Idempotent_element wikiPageID "361940".
- Idempotent_element wikiPageRevisionID "605336455".
- Idempotent_element hasPhotoCollection Idempotent_element.
- Idempotent_element subject Category:Abstract_algebra.
- Idempotent_element comment "In abstract algebra, an element x of a set with a binary operation ∗ is called an idempotent element (or just an idempotent) if x ∗ x = x. This reflects the idempotence of the binary operation on that particular element.Idempotents are especially prominent in ring theory. For general rings, elements idempotent under multiplication are tied with decompositions of modules, as well as to homological properties of the ring.".
- Idempotent_element label "Idempotent element".
- Idempotent_element label "Idempotent element".
- Idempotent_element sameAs Idempotent_element.
- Idempotent_element sameAs m.0n_9ygr.
- Idempotent_element sameAs Q2243424.
- Idempotent_element sameAs Q2243424.
- Idempotent_element wasDerivedFrom Idempotent_element?oldid=605336455.
- Idempotent_element isPrimaryTopicOf Idempotent_element.