Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Implicit_function_theorem> ?p ?o. }
Showing items 1 to 49 of
49
with 100 items per page.
- Implicit_function_theorem abstract "In multivariable calculus, the implicit function theorem is a tool which allows relations to be converted to functions of several real variables. It does this by representing the relation as the graph of a function. There may not be a single function whose graph is the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function.The theorem states that if the equation R(x, y) = 0 (defining an implicit function) satisfies some mild conditions on its partial derivatives, then one can in principle solve this equation for y, at least over some small interval. Geometrically, the locus defined by R(x, y) = 0 will overlap locally with the graph of y = f(x), where f(x) is an explicit function.".
- Implicit_function_theorem thumbnail Implicit_circle.svg?width=300.
- Implicit_function_theorem wikiPageID "581005".
- Implicit_function_theorem wikiPageRevisionID "601836694".
- Implicit_function_theorem authorLink "Lev Dmitrievich Kudryavtsev".
- Implicit_function_theorem first "L.D.".
- Implicit_function_theorem first "V.I.".
- Implicit_function_theorem hasPhotoCollection Implicit_function_theorem.
- Implicit_function_theorem id "i/i050310".
- Implicit_function_theorem id "i/i050320".
- Implicit_function_theorem last "Danilov".
- Implicit_function_theorem last "Kudryavtsev".
- Implicit_function_theorem title "Implicit function".
- Implicit_function_theorem subject Category:Theorems_in_calculus.
- Implicit_function_theorem subject Category:Theorems_in_real_analysis.
- Implicit_function_theorem type Abstraction100002137.
- Implicit_function_theorem type Communication100033020.
- Implicit_function_theorem type Message106598915.
- Implicit_function_theorem type Proposition106750804.
- Implicit_function_theorem type Statement106722453.
- Implicit_function_theorem type Theorem106752293.
- Implicit_function_theorem type TheoremsInCalculus.
- Implicit_function_theorem type TheoremsInRealAnalysis.
- Implicit_function_theorem comment "In multivariable calculus, the implicit function theorem is a tool which allows relations to be converted to functions of several real variables. It does this by representing the relation as the graph of a function. There may not be a single function whose graph is the entire relation, but there may be such a function on a restriction of the domain of the relation.".
- Implicit_function_theorem label "Funkcja uwikłana".
- Implicit_function_theorem label "Impliciete functiestelling".
- Implicit_function_theorem label "Implicit function theorem".
- Implicit_function_theorem label "Satz von der impliziten Funktion".
- Implicit_function_theorem label "Teorema de la función implícita".
- Implicit_function_theorem label "Teorema delle funzioni implicite".
- Implicit_function_theorem label "Théorème des fonctions implicites".
- Implicit_function_theorem label "Теорема о неявной функции".
- Implicit_function_theorem label "مبرهنة الدالة الضمنية".
- Implicit_function_theorem label "隐函数定理".
- Implicit_function_theorem sameAs Satz_von_der_impliziten_Funktion.
- Implicit_function_theorem sameAs Teorema_de_la_función_implícita.
- Implicit_function_theorem sameAs Théorème_des_fonctions_implicites.
- Implicit_function_theorem sameAs Fungsi_implisit.
- Implicit_function_theorem sameAs Teorema_delle_funzioni_implicite.
- Implicit_function_theorem sameAs 음함수_정리.
- Implicit_function_theorem sameAs Impliciete_functiestelling.
- Implicit_function_theorem sameAs Funkcja_uwikłana.
- Implicit_function_theorem sameAs m.02s4mn.
- Implicit_function_theorem sameAs Q848375.
- Implicit_function_theorem sameAs Q848375.
- Implicit_function_theorem sameAs Implicit_function_theorem.
- Implicit_function_theorem wasDerivedFrom Implicit_function_theorem?oldid=601836694.
- Implicit_function_theorem depiction Implicit_circle.svg.
- Implicit_function_theorem isPrimaryTopicOf Implicit_function_theorem.