Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Inclusion_map> ?p ?o. }
Showing items 1 to 38 of
38
with 100 items per page.
- Inclusion_map abstract "In mathematics, if is a subset of , then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element, of to , treated as an element of A "hooked arrow" is sometimes used in place of the function arrow above to denote an inclusion map.This and other analogous injective functions from substructures are sometimes called natural injections.Given any morphism between objects X and Y, if there is an inclusion map into the domain , then one can form the restriction fi of f. In many instances, one can also construct a canonical inclusion into the codomain R→Y known as the range of f.".
- Inclusion_map thumbnail Venn_A_subset_B.svg?width=300.
- Inclusion_map wikiPageID "492516".
- Inclusion_map wikiPageRevisionID "577721356".
- Inclusion_map hasPhotoCollection Inclusion_map.
- Inclusion_map subject Category:Basic_concepts_in_set_theory.
- Inclusion_map subject Category:Functions_and_mappings.
- Inclusion_map type Abstraction100002137.
- Inclusion_map type BasicConceptsInSetTheory.
- Inclusion_map type Cognition100023271.
- Inclusion_map type Concept105835747.
- Inclusion_map type Content105809192.
- Inclusion_map type Function113783816.
- Inclusion_map type FunctionsAndMappings.
- Inclusion_map type Idea105833840.
- Inclusion_map type MathematicalRelation113783581.
- Inclusion_map type PsychologicalFeature100023100.
- Inclusion_map type Relation100031921.
- Inclusion_map comment "In mathematics, if is a subset of , then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element, of to , treated as an element of A "hooked arrow" is sometimes used in place of the function arrow above to denote an inclusion map.This and other analogous injective functions from substructures are sometimes called natural injections.Given any morphism between objects X and Y, if there is an inclusion map into the domain , then one can form the restriction fi of f. ".
- Inclusion_map label "Função inclusão".
- Inclusion_map label "Inclusion map".
- Inclusion_map label "Injection canonique".
- Inclusion_map label "Inklusionsabbildung".
- Inclusion_map label "Inyección canónica".
- Inclusion_map label "包含写像".
- Inclusion_map label "包含映射".
- Inclusion_map sameAs Inklusionsabbildung.
- Inclusion_map sameAs Inyección_canónica.
- Inclusion_map sameAs Injection_canonique.
- Inclusion_map sameAs 包含写像.
- Inclusion_map sameAs Função_inclusão.
- Inclusion_map sameAs m.02g_fw.
- Inclusion_map sameAs Q1663694.
- Inclusion_map sameAs Q1663694.
- Inclusion_map sameAs Inclusion_map.
- Inclusion_map wasDerivedFrom Inclusion_map?oldid=577721356.
- Inclusion_map depiction Venn_A_subset_B.svg.
- Inclusion_map isPrimaryTopicOf Inclusion_map.