Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Infinitesimal> ?p ?o. }
Showing items 1 to 47 of
47
with 100 items per page.
- Infinitesimal abstract "Infinitesimals have been used to express the idea of objects so small that there is no way to see them or to measure them. The insight with exploiting infinitesimals was that objects could still retain certain specific properties, such as angle or slope, even though these objects were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinite-th" item in a sequence. It was originally introduced around 1670 by either Nicolaus Mercator or Gottfried Wilhelm Leibniz. Infinitesimals are a basic building block of infinitesimal calculus.In common speech, an infinitesimal object is an object which is smaller than any feasible measurement, but not zero in size; or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective, "infinitesimal" means "extremely small". In order to give it a meaning it usually has to be compared to another infinitesimal object in the same context (as in a derivative). Infinitely many infinitesimals are summed to produce an integral.Archimedes used what eventually came to be known as the Method of indivisibles in his work The Method of Mechanical Theorems to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the Method of Exhaustion. The 15th century saw the work of Nicholas of Cusa, further developed in the 17th century by Johannes Kepler, in particular calculation of area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin's work on decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension 1. John Wallis's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted in area calculations. The use of infinitesimals by Leibniz relied upon heuristic principles, such as the Law of Continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the Transcendental Law of Homogeneity that specifies procedures for replacing expressions involving inassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange. Augustin-Louis Cauchy exploited infinitesimals both in defining continuity in his Cours d'Analyse, and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson in 1961, who developed non-standard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals implement an infinitesimal-enriched continuum and the transfer principle implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.".
- Infinitesimal wikiPageExternalLink people?name=Karel_Hrbacek.
- Infinitesimal wikiPageExternalLink books-lnl_25.html.
- Infinitesimal wikiPageExternalLink calc.
- Infinitesimal wikiPageExternalLink InfsmlCalc.htm.
- Infinitesimal wikiPageExternalLink calc.html.
- Infinitesimal wikiPageExternalLink order?SGWID=4-40110-22-1590889-0.
- Infinitesimal wikiPageExternalLink mathematics?SGWID=4-40638-22-173705722-0.
- Infinitesimal wikiPageID "160990".
- Infinitesimal wikiPageRevisionID "602360353".
- Infinitesimal hasPhotoCollection Infinitesimal.
- Infinitesimal subject Category:Calculus.
- Infinitesimal subject Category:History_of_calculus.
- Infinitesimal subject Category:History_of_mathematics.
- Infinitesimal subject Category:Infinity.
- Infinitesimal subject Category:Mathematical_logic.
- Infinitesimal subject Category:Mathematics_of_infinitesimals.
- Infinitesimal subject Category:Non-standard_analysis.
- Infinitesimal comment "Infinitesimals have been used to express the idea of objects so small that there is no way to see them or to measure them. The insight with exploiting infinitesimals was that objects could still retain certain specific properties, such as angle or slope, even though these objects were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinite-th" item in a sequence.".
- Infinitesimal label "Infiniment petit".
- Infinitesimal label "Infinitesimaal".
- Infinitesimal label "Infinitesimal".
- Infinitesimal label "Infinitesimal".
- Infinitesimal label "Infinitesimal".
- Infinitesimal label "Infinitesimalzahl".
- Infinitesimal label "Infinitesimo".
- Infinitesimal label "Nieskończenie małe".
- Infinitesimal label "Бесконечно малое".
- Infinitesimal label "موحل في الصغر".
- Infinitesimal label "無窮小量".
- Infinitesimal label "無限小".
- Infinitesimal sameAs Infinitezimální_hodnota.
- Infinitesimal sameAs Infinitesimalzahl.
- Infinitesimal sameAs Infinitesimal.
- Infinitesimal sameAs Infinitesimo.
- Infinitesimal sameAs Infiniment_petit.
- Infinitesimal sameAs Infinitesimo.
- Infinitesimal sameAs 無限小.
- Infinitesimal sameAs 무한소.
- Infinitesimal sameAs Infinitesimaal.
- Infinitesimal sameAs Nieskończenie_małe.
- Infinitesimal sameAs Infinitesimal.
- Infinitesimal sameAs m.0159jj.
- Infinitesimal sameAs Q193885.
- Infinitesimal sameAs Q193885.
- Infinitesimal wasDerivedFrom Infinitesimal?oldid=602360353.
- Infinitesimal isPrimaryTopicOf Infinitesimal.