Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Inverse_hyperbolic_function> ?p ?o. }
Showing items 1 to 45 of
45
with 100 items per page.
- Inverse_hyperbolic_function abstract "In mathematics, the inverse hyperbolic functions provide a hyperbolic angle corresponding to a given value of a hyperbolic function. The size of the hyperbolic angle is equal to the area of the corresponding hyperbolic sector of the hyperbola xy = 1, or twice the area of the corresponding sector of the unit hyperbola x2 − y2 = 1, just as a circular angle is twice the area of the circular sector of the unit circle. Some authors have called inverse hyperbolic functions "area functions" to realize the hyperbolic angles.The abbreviations arcsinh, arccosh, etc., are commonly used, even though they are misnomers, since the prefix arc is the abbreviation for arcus, while the prefix ar stands for area. Other authors prefer to use the notation argsinh, argcosh, argtanh, and so on. In computer science this is often shortened to asinh. The notation sinh−1(x), cosh−1(x), etc., is also used, despite the fact that care must be taken to avoid misinterpretations of the superscript −1 as a power as opposed to a shorthand for inverse (e.g., cosh−1(x) versus cosh(x)−1).".
- Inverse_hyperbolic_function thumbnail Mplwp_inverse_hyperbolic_functions.svg?width=300.
- Inverse_hyperbolic_function wikiPageExternalLink InverseHyperbolicFunctions.html.
- Inverse_hyperbolic_function wikiPageExternalLink hy8.html.
- Inverse_hyperbolic_function wikiPageID "3804557".
- Inverse_hyperbolic_function wikiPageRevisionID "606629813".
- Inverse_hyperbolic_function align "center".
- Inverse_hyperbolic_function alt "Square representing central portion of the complex z-plane painted in psychedelic colours".
- Inverse_hyperbolic_function footer "Inverse hyperbolic functions in the complex z-plane: the colour at each point in the plane represents the complex value of the respective function at that point".
- Inverse_hyperbolic_function hasPhotoCollection Inverse_hyperbolic_function.
- Inverse_hyperbolic_function id "p/i052370".
- Inverse_hyperbolic_function image "Complex ArcCosh.jpg".
- Inverse_hyperbolic_function image "Complex ArcCoth.jpg".
- Inverse_hyperbolic_function image "Complex ArcCsch.jpg".
- Inverse_hyperbolic_function image "Complex ArcSech.jpg".
- Inverse_hyperbolic_function image "Complex ArcSinh.jpg".
- Inverse_hyperbolic_function image "Complex ArcTanh.jpg".
- Inverse_hyperbolic_function title "Inverse hyperbolic functions".
- Inverse_hyperbolic_function width "140".
- Inverse_hyperbolic_function subject Category:Elementary_special_functions.
- Inverse_hyperbolic_function type Abstraction100002137.
- Inverse_hyperbolic_function type ElementarySpecialFunctions.
- Inverse_hyperbolic_function type Function113783816.
- Inverse_hyperbolic_function type MathematicalRelation113783581.
- Inverse_hyperbolic_function type Relation100031921.
- Inverse_hyperbolic_function comment "In mathematics, the inverse hyperbolic functions provide a hyperbolic angle corresponding to a given value of a hyperbolic function. The size of the hyperbolic angle is equal to the area of the corresponding hyperbolic sector of the hyperbola xy = 1, or twice the area of the corresponding sector of the unit hyperbola x2 − y2 = 1, just as a circular angle is twice the area of the circular sector of the unit circle.".
- Inverse_hyperbolic_function label "Areaalfunctie".
- Inverse_hyperbolic_function label "Areafunktion".
- Inverse_hyperbolic_function label "Funkcje hiperboliczne odwrotne".
- Inverse_hyperbolic_function label "Inverse hyperbolic function".
- Inverse_hyperbolic_function label "Обратные гиперболические функции".
- Inverse_hyperbolic_function label "反双曲函数".
- Inverse_hyperbolic_function label "逆双曲線関数".
- Inverse_hyperbolic_function sameAs Hyperbolometrická_funkce.
- Inverse_hyperbolic_function sameAs Areafunktion.
- Inverse_hyperbolic_function sameAs 逆双曲線関数.
- Inverse_hyperbolic_function sameAs Areaalfunctie.
- Inverse_hyperbolic_function sameAs Funkcje_hiperboliczne_odwrotne.
- Inverse_hyperbolic_function sameAs m.025sw65.
- Inverse_hyperbolic_function sameAs Q640600.
- Inverse_hyperbolic_function sameAs Q640600.
- Inverse_hyperbolic_function sameAs Inverse_hyperbolic_function.
- Inverse_hyperbolic_function wasDerivedFrom Inverse_hyperbolic_function?oldid=606629813.
- Inverse_hyperbolic_function depiction Mplwp_inverse_hyperbolic_functions.svg.
- Inverse_hyperbolic_function isPrimaryTopicOf Inverse_hyperbolic_function.