Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Iterated_monodromy_group> ?p ?o. }
Showing items 1 to 18 of
18
with 100 items per page.
- Iterated_monodromy_group abstract "In geometric group theory and dynamical systems the iterated monodromy group of a covering map is a group describing the monodromy action of the fundamental group on all iterations of the covering. A single covering map between spaces is therefore used to create a tower of coverings, by placing the covering over itself repeatedly. In terms of the Galois theory of covering spaces, this construction on spaces is expected to correspond to a construction on groups. The iterated monodromy group provides this construction, and it is applied to encode the combinatorics and symbolic dynamics of the covering, and provide examples of self-similar groups.".
- Iterated_monodromy_group wikiPageExternalLink index.html.
- Iterated_monodromy_group wikiPageExternalLink MonodromyGroup.html.
- Iterated_monodromy_group wikiPageExternalLink item=surv-117.
- Iterated_monodromy_group wikiPageExternalLink 1?skip=0&query_id=02226432472b51fb.
- Iterated_monodromy_group wikiPageID "4649761".
- Iterated_monodromy_group wikiPageRevisionID "593261842".
- Iterated_monodromy_group hasPhotoCollection Iterated_monodromy_group.
- Iterated_monodromy_group subject Category:Complex_analysis.
- Iterated_monodromy_group subject Category:Geometric_group_theory.
- Iterated_monodromy_group subject Category:Homotopy_theory.
- Iterated_monodromy_group comment "In geometric group theory and dynamical systems the iterated monodromy group of a covering map is a group describing the monodromy action of the fundamental group on all iterations of the covering. A single covering map between spaces is therefore used to create a tower of coverings, by placing the covering over itself repeatedly. In terms of the Galois theory of covering spaces, this construction on spaces is expected to correspond to a construction on groups.".
- Iterated_monodromy_group label "Iterated monodromy group".
- Iterated_monodromy_group sameAs m.0cfg59.
- Iterated_monodromy_group sameAs Q17098249.
- Iterated_monodromy_group sameAs Q17098249.
- Iterated_monodromy_group wasDerivedFrom Iterated_monodromy_group?oldid=593261842.
- Iterated_monodromy_group isPrimaryTopicOf Iterated_monodromy_group.