Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Jacobi_field> ?p ?o. }
Showing items 1 to 25 of
25
with 100 items per page.
- Jacobi_field abstract "In Riemannian geometry, a Jacobi field is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.".
- Jacobi_field wikiPageID "875509".
- Jacobi_field wikiPageRevisionID "543497076".
- Jacobi_field hasPhotoCollection Jacobi_field.
- Jacobi_field subject Category:Equations.
- Jacobi_field subject Category:Riemannian_geometry.
- Jacobi_field type Abstraction100002137.
- Jacobi_field type Communication100033020.
- Jacobi_field type Equation106669864.
- Jacobi_field type Equations.
- Jacobi_field type MathematicalStatement106732169.
- Jacobi_field type Message106598915.
- Jacobi_field type Statement106722453.
- Jacobi_field comment "In Riemannian geometry, a Jacobi field is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.".
- Jacobi_field label "Champ de Jacobi".
- Jacobi_field label "Jacobi field".
- Jacobi_field label "Jacobifeld".
- Jacobi_field sameAs Jacobifeld.
- Jacobi_field sameAs Champ_de_Jacobi.
- Jacobi_field sameAs m.03ks5d.
- Jacobi_field sameAs Q1677714.
- Jacobi_field sameAs Q1677714.
- Jacobi_field sameAs Jacobi_field.
- Jacobi_field wasDerivedFrom Jacobi_field?oldid=543497076.
- Jacobi_field isPrimaryTopicOf Jacobi_field.