Matches in DBpedia 2014 for { <http://dbpedia.org/resource/KdV_hierarchy> ?p ?o. }
Showing items 1 to 34 of
34
with 100 items per page.
- KdV_hierarchy abstract "In mathematics, the KdV hierarchy is an infinite sequence of partial differential equations which starts with the Korteweg–de Vries equation.Let be translation operator defined on real valued functions as . Let be set of all analytic functions that satisfy , i.e. periodic functions of period 1. For each , define an operatoron the space of smooth functions on . We define the Bloch spectrum to be the set of such that there is a nonzero function with and . The KdV hierarchy is a sequence of nonlinear differential operators such that for any we have an analytic function and we define to be and,then is independent of .".
- KdV_hierarchy wikiPageExternalLink KdV_hierarchy.
- KdV_hierarchy wikiPageID "13892472".
- KdV_hierarchy wikiPageRevisionID "540835449".
- KdV_hierarchy hasPhotoCollection KdV_hierarchy.
- KdV_hierarchy subject Category:Exactly_solvable_models.
- KdV_hierarchy subject Category:Partial_differential_equations.
- KdV_hierarchy subject Category:Solitons.
- KdV_hierarchy type Abstraction100002137.
- KdV_hierarchy type Communication100033020.
- KdV_hierarchy type DifferentialEquation106670521.
- KdV_hierarchy type Equation106669864.
- KdV_hierarchy type Event100029378.
- KdV_hierarchy type Happening107283608.
- KdV_hierarchy type MathematicalStatement106732169.
- KdV_hierarchy type Message106598915.
- KdV_hierarchy type Movement107309781.
- KdV_hierarchy type PartialDifferentialEquation106670866.
- KdV_hierarchy type PartialDifferentialEquations.
- KdV_hierarchy type PsychologicalFeature100023100.
- KdV_hierarchy type Soliton107346344.
- KdV_hierarchy type Solitons.
- KdV_hierarchy type Statement106722453.
- KdV_hierarchy type TravelingWave107347051.
- KdV_hierarchy type Wave107345593.
- KdV_hierarchy type YagoPermanentlyLocatedEntity.
- KdV_hierarchy comment "In mathematics, the KdV hierarchy is an infinite sequence of partial differential equations which starts with the Korteweg–de Vries equation.Let be translation operator defined on real valued functions as . Let be set of all analytic functions that satisfy , i.e. periodic functions of period 1. For each , define an operatoron the space of smooth functions on . We define the Bloch spectrum to be the set of such that there is a nonzero function with and .".
- KdV_hierarchy label "KdV hierarchy".
- KdV_hierarchy sameAs m.03cmdym.
- KdV_hierarchy sameAs Q6382014.
- KdV_hierarchy sameAs Q6382014.
- KdV_hierarchy sameAs KdV_hierarchy.
- KdV_hierarchy wasDerivedFrom KdV_hierarchy?oldid=540835449.
- KdV_hierarchy isPrimaryTopicOf KdV_hierarchy.