Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Klein_surface> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- Klein_surface abstract "In mathematics, a Klein surface, introduced by Klein (1882), is a non-orientable closed surface with a conformal structure, or equivalently a dianalytic manifold of complex dimension 1. A compact Klein surface is homeomorphic to a connected sum of a number of copies of the real projective plane. The case of two copies corresponds to the famous Klein bottle. The next case, the connected sum of three copies of RP2, is a surface of Euler characteristic equal to −1. Its orientable double cover is the genus-2 surface.".
- Klein_surface wikiPageExternalLink books?id=p2gLAAAAYAAJ.
- Klein_surface wikiPageID "20478442".
- Klein_surface wikiPageRevisionID "600067994".
- Klein_surface hasPhotoCollection Klein_surface.
- Klein_surface subject Category:Surfaces.
- Klein_surface type Artifact100021939.
- Klein_surface type Object100002684.
- Klein_surface type PhysicalEntity100001930.
- Klein_surface type Surface104362025.
- Klein_surface type Surfaces.
- Klein_surface type Whole100003553.
- Klein_surface comment "In mathematics, a Klein surface, introduced by Klein (1882), is a non-orientable closed surface with a conformal structure, or equivalently a dianalytic manifold of complex dimension 1. A compact Klein surface is homeomorphic to a connected sum of a number of copies of the real projective plane. The case of two copies corresponds to the famous Klein bottle. The next case, the connected sum of three copies of RP2, is a surface of Euler characteristic equal to −1.".
- Klein_surface label "Klein surface".
- Klein_surface sameAs m.04z_qgf.
- Klein_surface sameAs Q6420197.
- Klein_surface sameAs Q6420197.
- Klein_surface sameAs Klein_surface.
- Klein_surface wasDerivedFrom Klein_surface?oldid=600067994.
- Klein_surface isPrimaryTopicOf Klein_surface.