Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Kobayashi_metric> ?p ?o. }
Showing items 1 to 31 of
31
with 100 items per page.
- Kobayashi_metric abstract "In mathematics, the original Kobayashi metric is a pseudometric (or pseudodistance) on complex manifolds introduced by Kobayashi (1967). It can be viewed as the dual of the Carathéodory metric, and has been extended to complex analytic spaces and almost complex manifolds. On Teichmüller space the Kobayashi metric coincides with the Teichmüller metric; on the unit ball, it coincides with the Bergman metric.An analogous pseudodistance was constructed for flat affine and projective structures in Kobayashi (1977) and then generalized to (normal) projective connections. Essentially the same construction has been applied to (normal, pseudo-Riemannian) conformal connections and, more recently, to general (regular) parabolic geometries.".
- Kobayashi_metric wikiPageExternalLink books?id=rleQdMhML6kC.
- Kobayashi_metric wikiPageExternalLink S0002-9904-1967-11745-2.pdf.
- Kobayashi_metric wikiPageExternalLink S0273-0979-1986-15426-1.pdf.
- Kobayashi_metric wikiPageID "31025902".
- Kobayashi_metric wikiPageRevisionID "546109988".
- Kobayashi_metric hasPhotoCollection Kobayashi_metric.
- Kobayashi_metric subject Category:Complex_manifolds.
- Kobayashi_metric type Artifact100021939.
- Kobayashi_metric type ComplexManifolds.
- Kobayashi_metric type Conduit103089014.
- Kobayashi_metric type Manifold103717750.
- Kobayashi_metric type Object100002684.
- Kobayashi_metric type Passage103895293.
- Kobayashi_metric type PhysicalEntity100001930.
- Kobayashi_metric type Pipe103944672.
- Kobayashi_metric type Tube104493505.
- Kobayashi_metric type Way104564698.
- Kobayashi_metric type Whole100003553.
- Kobayashi_metric type YagoGeoEntity.
- Kobayashi_metric type YagoPermanentlyLocatedEntity.
- Kobayashi_metric comment "In mathematics, the original Kobayashi metric is a pseudometric (or pseudodistance) on complex manifolds introduced by Kobayashi (1967). It can be viewed as the dual of the Carathéodory metric, and has been extended to complex analytic spaces and almost complex manifolds.".
- Kobayashi_metric label "Kobayashi metric".
- Kobayashi_metric label "小林距離".
- Kobayashi_metric sameAs 小林距離.
- Kobayashi_metric sameAs m.0gg9jhy.
- Kobayashi_metric sameAs Q6424284.
- Kobayashi_metric sameAs Q6424284.
- Kobayashi_metric sameAs Kobayashi_metric.
- Kobayashi_metric wasDerivedFrom Kobayashi_metric?oldid=546109988.
- Kobayashi_metric isPrimaryTopicOf Kobayashi_metric.