Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Kostant_partition_function> ?p ?o. }
Showing items 1 to 19 of
19
with 100 items per page.
- Kostant_partition_function abstract "In representation theory, a branch of mathematics, the Kostant partition function, introduced by Bertram Kostant (1958, 1959), of a root system is the number of ways one can represent a vector (weight) as an integral non-negative sum of the positive roots . Kostant used it to rewrite the Weyl character formula for the multiplicity of a weight of an irreducible representation of a semisimple Lie algebra.The Kostant partition function can also be defined for Kac–Moody algebras and has similar properties.".
- Kostant_partition_function wikiPageID "23994987".
- Kostant_partition_function wikiPageRevisionID "582395600".
- Kostant_partition_function authorlink "Bertram Kostant".
- Kostant_partition_function first "Bertram".
- Kostant_partition_function hasPhotoCollection Kostant_partition_function.
- Kostant_partition_function last "Kostant".
- Kostant_partition_function year "1958".
- Kostant_partition_function year "1959".
- Kostant_partition_function subject Category:Representation_theory.
- Kostant_partition_function subject Category:Representation_theory_of_Lie_algebras.
- Kostant_partition_function subject Category:Types_of_functions.
- Kostant_partition_function comment "In representation theory, a branch of mathematics, the Kostant partition function, introduced by Bertram Kostant (1958, 1959), of a root system is the number of ways one can represent a vector (weight) as an integral non-negative sum of the positive roots .".
- Kostant_partition_function label "Kostant partition function".
- Kostant_partition_function sameAs m.07kc2hw.
- Kostant_partition_function sameAs Q6433478.
- Kostant_partition_function sameAs Q6433478.
- Kostant_partition_function wasDerivedFrom Kostant_partition_function?oldid=582395600.
- Kostant_partition_function isPrimaryTopicOf Kostant_partition_function.