Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Kruskal–Wallis_one-way_analysis_of_variance> ?p ?o. }
Showing items 1 to 26 of
26
with 100 items per page.
- Kruskal–Wallis_one-way_analysis_of_variance abstract "The Kruskal–Wallis one-way analysis of variance by ranks (named after William Kruskal and W. Allen Wallis) is a non-parametric method for testing whether samples originate from the same distribution. It is used for comparing more than two samples that are independent, or not related. The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA). When the Kruskal-Wallis test leads to significant results, then at least one of the samples is different from the other samples. The test does not identify where the differences occur or how many differences actually occur. It is an extension of the Mann–Whitney U test to 3 or more groups. The Mann-Whitney would help analyze the specific sample pairs for significant differences.Since it is a non-parametric method, the Kruskal–Wallis test does not assume a normal distribution of the residuals, unlike the analogous one-way analysis of variance. However, the test does assume an identically shaped and scaled distribution for each group, except for any difference in medians.Kruskal–Wallis is also used when the examined groups are of unequal size (different number of participants).".
- Kruskal–Wallis_one-way_analysis_of_variance wikiPageID "1198757".
- Kruskal–Wallis_one-way_analysis_of_variance wikiPageRevisionID "598566306".
- Kruskal–Wallis_one-way_analysis_of_variance subject Category:Analysis_of_variance.
- Kruskal–Wallis_one-way_analysis_of_variance subject Category:Non-parametric_statistics.
- Kruskal–Wallis_one-way_analysis_of_variance subject Category:Statistical_tests.
- Kruskal–Wallis_one-way_analysis_of_variance comment "The Kruskal–Wallis one-way analysis of variance by ranks (named after William Kruskal and W. Allen Wallis) is a non-parametric method for testing whether samples originate from the same distribution. It is used for comparing more than two samples that are independent, or not related. The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA).".
- Kruskal–Wallis_one-way_analysis_of_variance label "Kruskal-Wallis-Test".
- Kruskal–Wallis_one-way_analysis_of_variance label "Kruskal-Wallistoets".
- Kruskal–Wallis_one-way_analysis_of_variance label "Kruskal–Wallis one-way analysis of variance".
- Kruskal–Wallis_one-way_analysis_of_variance label "Prueba de Kruskal-Wallis".
- Kruskal–Wallis_one-way_analysis_of_variance label "Test Kruskala-Wallisa".
- Kruskal–Wallis_one-way_analysis_of_variance label "Test di Kruskal-Wallis".
- Kruskal–Wallis_one-way_analysis_of_variance label "Teste de Kruskal-Wallis".
- Kruskal–Wallis_one-way_analysis_of_variance label "Критерий Краскела — Уоллиса".
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Kruskal%E2%80%93Wallis_one-way_analysis_of_variance.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Kruskal-Wallis-Test.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Prueba_de_Kruskal-Wallis.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Kruskal-Wallis_froga.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Test_di_Kruskal-Wallis.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Kruskal-Wallistoets.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Test_Kruskala-Wallisa.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Teste_de_Kruskal-Wallis.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Q1790302.
- Kruskal–Wallis_one-way_analysis_of_variance sameAs Q1790302.
- Kruskal–Wallis_one-way_analysis_of_variance wasDerivedFrom Kruskal–Wallis_one-way_analysis_of_variance?oldid=598566306.