Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Löwenheim–Skolem_theorem> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Löwenheim–Skolem_theorem abstract "In mathematical logic, the Löwenheim–Skolem theorem, named for Leopold Löwenheim and Thoralf Skolem, states that if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ. The result implies that first-order theories are unable to control the cardinality of their infinite models, and that no first-order theory with an infinite model can have a unique model up to isomorphism.The (downward) Löwenheim–Skolem theorem is one of the two key properties, along with the compactness theorem, that are used in Lindström's theorem to characterize first-order logic. In general, the Löwenheim–Skolem theorem does not hold in stronger logics such as second-order logic.".
- Löwenheim–Skolem_theorem wikiPageID "341482".
- Löwenheim–Skolem_theorem wikiPageRevisionID "572059995".
- Löwenheim–Skolem_theorem author "Sakharov, Alex and Weisstein, Eric W.".
- Löwenheim–Skolem_theorem id "Loewenheim-SkolemTheorem".
- Löwenheim–Skolem_theorem title "Löwenheim-Skolem Theorem".
- Löwenheim–Skolem_theorem subject Category:Metatheorems.
- Löwenheim–Skolem_theorem subject Category:Model_theory.
- Löwenheim–Skolem_theorem subject Category:Theorems_in_the_foundations_of_mathematics.
- Löwenheim–Skolem_theorem comment "In mathematical logic, the Löwenheim–Skolem theorem, named for Leopold Löwenheim and Thoralf Skolem, states that if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ.".
- Löwenheim–Skolem_theorem label "Löwenheim–Skolem theorem".
- Löwenheim–Skolem_theorem label "Satz von Löwenheim-Skolem".
- Löwenheim–Skolem_theorem label "Stelling van Löwenheim-Skolem".
- Löwenheim–Skolem_theorem label "Teorema de Löwenheim-Skolem".
- Löwenheim–Skolem_theorem label "Teorema di Löwenheim-Skolem (debole)".
- Löwenheim–Skolem_theorem label "Théorème de Löwenheim-Skolem".
- Löwenheim–Skolem_theorem label "Twierdzenie Löwenheima-Skolema".
- Löwenheim–Skolem_theorem label "Теорема Лёвенгейма — Скулема".
- Löwenheim–Skolem_theorem label "レーヴェンハイム-スコーレムの定理".
- Löwenheim–Skolem_theorem label "勒文海姆–斯科伦定理".
- Löwenheim–Skolem_theorem sameAs L%C3%B6wenheim%E2%80%93Skolem_theorem.
- Löwenheim–Skolem_theorem sameAs Löwenheimova-Skolemova_věta.
- Löwenheim–Skolem_theorem sameAs Satz_von_Löwenheim-Skolem.
- Löwenheim–Skolem_theorem sameAs Teorema_de_Löwenheim-Skolem.
- Löwenheim–Skolem_theorem sameAs Théorème_de_Löwenheim-Skolem.
- Löwenheim–Skolem_theorem sameAs Teorema_di_Löwenheim-Skolem_(debole).
- Löwenheim–Skolem_theorem sameAs レーヴェンハイム-スコーレムの定理.
- Löwenheim–Skolem_theorem sameAs 뢰벤하임-스콜렘_정리.
- Löwenheim–Skolem_theorem sameAs Stelling_van_Löwenheim-Skolem.
- Löwenheim–Skolem_theorem sameAs Twierdzenie_Löwenheima-Skolema.
- Löwenheim–Skolem_theorem sameAs Q1068283.
- Löwenheim–Skolem_theorem sameAs Q1068283.
- Löwenheim–Skolem_theorem wasDerivedFrom Löwenheim–Skolem_theorem?oldid=572059995.