Matches in DBpedia 2014 for { <http://dbpedia.org/resource/LLT_polynomial> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- LLT_polynomial abstract "In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as q-analogues of products of Schur functions.J. Haglund, M. Haiman, N. Loehr (2005) showed how to expand Macdonald polynomials in terms of LLT polynomials. Ian Grojnowski and Mark Haiman (preprint) proved a positivity conjecture for LLT polynomials that combined with the previous result implies the Macdonald positivity conjecture for Macdonald polynomials, and extended the definition of LLT polynomials to arbitrary finite root systems.".
- LLT_polynomial wikiPageExternalLink 9512031.
- LLT_polynomial wikiPageExternalLink 0409538.
- LLT_polynomial wikiPageExternalLink ~mhaiman.
- LLT_polynomial wikiPageID "10375543".
- LLT_polynomial wikiPageRevisionID "596377629".
- LLT_polynomial hasPhotoCollection LLT_polynomial.
- LLT_polynomial subject Category:Algebraic_combinatorics.
- LLT_polynomial subject Category:Algebraic_geometry.
- LLT_polynomial subject Category:Polynomials.
- LLT_polynomial subject Category:Q-analogs.
- LLT_polynomial subject Category:Symmetric_functions.
- LLT_polynomial type Abstraction100002137.
- LLT_polynomial type Function113783816.
- LLT_polynomial type MathematicalRelation113783581.
- LLT_polynomial type Polynomial105861855.
- LLT_polynomial type Polynomials.
- LLT_polynomial type Relation100031921.
- LLT_polynomial type SymmetricFunctions.
- LLT_polynomial comment "In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as q-analogues of products of Schur functions.J. Haglund, M. Haiman, N. Loehr (2005) showed how to expand Macdonald polynomials in terms of LLT polynomials.".
- LLT_polynomial label "LLT polynomial".
- LLT_polynomial label "Polynôme LLT".
- LLT_polynomial sameAs Polynôme_LLT.
- LLT_polynomial sameAs m.02q9tj9.
- LLT_polynomial sameAs Q6458976.
- LLT_polynomial sameAs Q6458976.
- LLT_polynomial sameAs LLT_polynomial.
- LLT_polynomial wasDerivedFrom LLT_polynomial?oldid=596377629.
- LLT_polynomial isPrimaryTopicOf LLT_polynomial.