Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Langlands_classification> ?p ?o. }
Showing items 1 to 15 of
15
with 100 items per page.
- Langlands_classification abstract "In mathematics, the Langlands classification is a classification of irreducible representations of a reductive Lie group G, suggested by Robert Langlands (1973). More precisely, it classifies the irreducible admissible (g,K)-modules,for g a Lie algebra of a reductive Lie group G, with maximal compact subgroup K, in terms of tempered representations of smaller groups. The tempered representations were in turn classified by Anthony Knapp and Gregg Zuckerman.".
- Langlands_classification wikiPageExternalLink kyoto.pdf.
- Langlands_classification wikiPageExternalLink books?id=T37ryFaTWm4C.
- Langlands_classification wikiPageExternalLink 16.
- Langlands_classification wikiPageID "10985992".
- Langlands_classification wikiPageRevisionID "573347364".
- Langlands_classification hasPhotoCollection Langlands_classification.
- Langlands_classification subject Category:Representation_theory_of_Lie_groups.
- Langlands_classification comment "In mathematics, the Langlands classification is a classification of irreducible representations of a reductive Lie group G, suggested by Robert Langlands (1973). More precisely, it classifies the irreducible admissible (g,K)-modules,for g a Lie algebra of a reductive Lie group G, with maximal compact subgroup K, in terms of tempered representations of smaller groups. The tempered representations were in turn classified by Anthony Knapp and Gregg Zuckerman.".
- Langlands_classification label "Langlands classification".
- Langlands_classification sameAs m.02qx93v.
- Langlands_classification sameAs Q6486186.
- Langlands_classification sameAs Q6486186.
- Langlands_classification wasDerivedFrom Langlands_classification?oldid=573347364.
- Langlands_classification isPrimaryTopicOf Langlands_classification.