Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Lattice_QCD> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Lattice_QCD abstract "Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered.Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the highly nonlinear nature of the strong force. This formulation of QCD in discrete rather than continuous spacetime naturally introduces a momentum cut-off at the order 1/a, where a is the lattice spacing, which regularizes the theory. As a result, lattice QCD is mathematically well-defined. Most importantly, lattice QCD provides a framework for investigation of non-perturbative phenomena such as confinement and quark–gluon plasma formation, which are intractable by means of analytic field theories.In lattice QCD, fields representing quarks are defined at lattice sites (which leads to fermion doubling), while the gluon fields are defined on the links connecting neighboring sites. This approximation approaches continuum QCD as the spacing between lattice sites is reduced to zero. Because the computational cost of numerical simulations can increase dramatically as the lattice spacing decreases, results are often extrapolated to a = 0 by repeated calculations at different lattice spacings a that are large enough to be tractable.Numerical lattice QCD calculations using Monte Carlo methods can be extremely computationally intensive, requiring the use of the largest available supercomputers. To reduce the computational burden, the so-called quenched approximation can be used, in which the quark fields are treated as non-dynamic "frozen" variables. While this was common in early lattice QCD calculations, "dynamical" fermions are now standard. These simulations typically utilize algorithms based upon molecular dynamics or microcanonical ensemble algorithms.At present, lattice QCD is primarily applicable at low densities where the numerical sign problem does not interfere with calculations. Lattice QCD predicts that confined quarks will become released to quark-gluon plasma around energies of 150 MeV Monte Carlo methods are free from the sign problem when applied to the case of QCD with gauge group SU(2) (QC2D).Lattice QCD has already made successful contact with many experiments. For example the mass of the proton has been determined theoretically with an error of less than 2 percent.Lattice QCD has also been used as a benchmark for high-performance computing, an approach originally developed in the context of the IBM Blue Gene supercomputer.".
- Lattice_QCD wikiPageExternalLink 0405024.
- Lattice_QCD wikiPageExternalLink 0509180.
- Lattice_QCD wikiPageExternalLink 9807028.
- Lattice_QCD wikiPageExternalLink LAT2005_001.pdf.
- Lattice_QCD wikiPageExternalLink www.fermiqcd.net.
- Lattice_QCD wikiPageID "977072".
- Lattice_QCD wikiPageRevisionID "599338197".
- Lattice_QCD hasPhotoCollection Lattice_QCD.
- Lattice_QCD subject Category:Lattice_models.
- Lattice_QCD subject Category:Quantum_chromodynamics.
- Lattice_QCD type Assistant109815790.
- Lattice_QCD type CausalAgent100007347.
- Lattice_QCD type LatticeModels.
- Lattice_QCD type LivingThing100004258.
- Lattice_QCD type Model110324560.
- Lattice_QCD type Object100002684.
- Lattice_QCD type Organism100004475.
- Lattice_QCD type Person100007846.
- Lattice_QCD type PhysicalEntity100001930.
- Lattice_QCD type Whole100003553.
- Lattice_QCD type Worker109632518.
- Lattice_QCD type YagoLegalActor.
- Lattice_QCD type YagoLegalActorGeo.
- Lattice_QCD comment "Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered.Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the highly nonlinear nature of the strong force.".
- Lattice_QCD label "Lattice QCD".
- Lattice_QCD label "QCD su reticolo".
- Lattice_QCD label "Retículo QCD".
- Lattice_QCD sameAs QCD_su_reticolo.
- Lattice_QCD sameAs Retículo_QCD.
- Lattice_QCD sameAs m.03w0t5.
- Lattice_QCD sameAs Q6166044.
- Lattice_QCD sameAs Q6166044.
- Lattice_QCD sameAs Lattice_QCD.
- Lattice_QCD wasDerivedFrom Lattice_QCD?oldid=599338197.
- Lattice_QCD isPrimaryTopicOf Lattice_QCD.