Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Lauricella_hypergeometric_series> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Lauricella_hypergeometric_series abstract "In 1893 Giuseppe Lauricella defined and studied four hypergeometric series FA, FB, FC, FD of three variables. They are (Lauricella 1893):for |x1| + |x2| + |x3| < 1 andfor |x1| < 1, |x2| < 1, |x3| < 1 andfor |x1|½ + |x2|½ + |x3|½ < 1 andfor |x1| < 1, |x2| < 1, |x3| < 1. Here the Pochhammer symbol (q)i indicates the i-th rising factorial power of q, i.e. These functions can be extended to other values of the variables x1, x2, x3 by means of analytic continuation.Lauricella also indicated the existence of ten other hypergeometric functions of three variables. These were named FE, FF, ..., FT and studied by Shanti Saran in 1954 (Saran 1954). There are therefore a total of 14 Lauricella–Saran hypergeometric functions.".
- Lauricella_hypergeometric_series wikiPageID "4016820".
- Lauricella_hypergeometric_series wikiPageRevisionID "544289781".
- Lauricella_hypergeometric_series author "Ronald M. Aarts".
- Lauricella_hypergeometric_series hasPhotoCollection Lauricella_hypergeometric_series.
- Lauricella_hypergeometric_series title "Lauricella Functions".
- Lauricella_hypergeometric_series urlname "LauricellaFunctions".
- Lauricella_hypergeometric_series subject Category:Hypergeometric_functions.
- Lauricella_hypergeometric_series subject Category:Mathematical_series.
- Lauricella_hypergeometric_series type Abstraction100002137.
- Lauricella_hypergeometric_series type Function113783816.
- Lauricella_hypergeometric_series type HypergeometricFunctions.
- Lauricella_hypergeometric_series type MathematicalRelation113783581.
- Lauricella_hypergeometric_series type Relation100031921.
- Lauricella_hypergeometric_series comment "In 1893 Giuseppe Lauricella defined and studied four hypergeometric series FA, FB, FC, FD of three variables. They are (Lauricella 1893):for |x1| + |x2| + |x3| < 1 andfor |x1| < 1, |x2| < 1, |x3| < 1 andfor |x1|½ + |x2|½ + |x3|½ < 1 andfor |x1| < 1, |x2| < 1, |x3| < 1. Here the Pochhammer symbol (q)i indicates the i-th rising factorial power of q, i.e.".
- Lauricella_hypergeometric_series label "Funzioni di Lauricella".
- Lauricella_hypergeometric_series label "Lauricella hypergeometric series".
- Lauricella_hypergeometric_series sameAs Funzioni_di_Lauricella.
- Lauricella_hypergeometric_series sameAs m.0bcq0c.
- Lauricella_hypergeometric_series sameAs Q3754612.
- Lauricella_hypergeometric_series sameAs Q3754612.
- Lauricella_hypergeometric_series sameAs Lauricella_hypergeometric_series.
- Lauricella_hypergeometric_series wasDerivedFrom Lauricella_hypergeometric_series?oldid=544289781.
- Lauricella_hypergeometric_series isPrimaryTopicOf Lauricella_hypergeometric_series.