Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Legendre_chi_function> ?p ?o. }
Showing items 1 to 27 of
27
with 100 items per page.
- Legendre_chi_function abstract "In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given byAs such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm asThe Legendre chi function appears as the discrete fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.The Legendre chi function is a special case of the Lerch transcendent, and is given by".
- Legendre_chi_function wikiPageExternalLink integral-int-01-frac-arctan2x-sqrt1-x2dx.
- Legendre_chi_function wikiPageExternalLink journal-getitem?pii=S0025-5718-99-01091-1.
- Legendre_chi_function wikiPageID "1269900".
- Legendre_chi_function wikiPageRevisionID "585033714".
- Legendre_chi_function hasPhotoCollection Legendre_chi_function.
- Legendre_chi_function title "Legendre's Chi Function".
- Legendre_chi_function urlname "LegendresChi-Function".
- Legendre_chi_function subject Category:Special_functions.
- Legendre_chi_function type Abstraction100002137.
- Legendre_chi_function type Function113783816.
- Legendre_chi_function type MathematicalRelation113783581.
- Legendre_chi_function type Relation100031921.
- Legendre_chi_function type SpecialFunctions.
- Legendre_chi_function comment "In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given byAs such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm asThe Legendre chi function appears as the discrete fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.The Legendre chi function is a special case of the Lerch transcendent, and is given by".
- Legendre_chi_function label "Fonction chi de Legendre".
- Legendre_chi_function label "Legendre chi function".
- Legendre_chi_function label "Legendresche Chi-Funktion".
- Legendre_chi_function label "Хи-функция Лежандра".
- Legendre_chi_function sameAs Legendresche_Chi-Funktion.
- Legendre_chi_function sameAs Fonction_chi_de_Legendre.
- Legendre_chi_function sameAs m.04nw14.
- Legendre_chi_function sameAs Q1452853.
- Legendre_chi_function sameAs Q1452853.
- Legendre_chi_function sameAs Legendre_chi_function.
- Legendre_chi_function wasDerivedFrom Legendre_chi_function?oldid=585033714.
- Legendre_chi_function isPrimaryTopicOf Legendre_chi_function.