Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Lehmann–Scheffé_theorem> ?p ?o. }
Showing items 1 to 15 of
15
with 100 items per page.
- Lehmann–Scheffé_theorem abstract "In statistics, the Lehmann–Scheffé theorem is prominent in mathematical statistics, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. The theorem states that any estimator which is unbiased for a given unknown quantity and which is based on only a complete, sufficient statistic (and on no other data-derived values) is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.Formally, if T is a complete sufficient statistic for θ and E(g(T)) = τ(θ) then g(T) is the minimum-variance unbiased estimator (MVUE) of τ(θ).".
- Lehmann–Scheffé_theorem wikiPageID "342602".
- Lehmann–Scheffé_theorem wikiPageRevisionID "588023899".
- Lehmann–Scheffé_theorem subject Category:Estimation_theory.
- Lehmann–Scheffé_theorem subject Category:Statistical_theorems.
- Lehmann–Scheffé_theorem comment "In statistics, the Lehmann–Scheffé theorem is prominent in mathematical statistics, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. The theorem states that any estimator which is unbiased for a given unknown quantity and which is based on only a complete, sufficient statistic (and on no other data-derived values) is the unique best unbiased estimator of that quantity.".
- Lehmann–Scheffé_theorem label "Lehmann–Scheffé theorem".
- Lehmann–Scheffé_theorem label "Satz von Lehmann–Scheffé".
- Lehmann–Scheffé_theorem label "Théorème de Lehmann-Scheffé".
- Lehmann–Scheffé_theorem sameAs Lehmann%E2%80%93Scheff%C3%A9_theorem.
- Lehmann–Scheffé_theorem sameAs Satz_von_Lehmann–Scheffé.
- Lehmann–Scheffé_theorem sameAs Théorème_de_Lehmann-Scheffé.
- Lehmann–Scheffé_theorem sameAs Q1129636.
- Lehmann–Scheffé_theorem sameAs Q1129636.
- Lehmann–Scheffé_theorem wasDerivedFrom Lehmann–Scheffé_theorem?oldid=588023899.