Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Limit_point_compact> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- Limit_point_compact abstract "In mathematics, a topological space X is said to be limit point compact or weakly countably compact if every infinite subset of X has a limit point in X. This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.".
- Limit_point_compact wikiPageID "9861462".
- Limit_point_compact wikiPageRevisionID "544713924".
- Limit_point_compact hasPhotoCollection Limit_point_compact.
- Limit_point_compact id "1234".
- Limit_point_compact title "Weakly countably compact".
- Limit_point_compact subject Category:Compactness_(mathematics).
- Limit_point_compact subject Category:Properties_of_topological_spaces.
- Limit_point_compact type Abstraction100002137.
- Limit_point_compact type Possession100032613.
- Limit_point_compact type PropertiesOfTopologicalSpaces.
- Limit_point_compact type Property113244109.
- Limit_point_compact type Relation100031921.
- Limit_point_compact comment "In mathematics, a topological space X is said to be limit point compact or weakly countably compact if every infinite subset of X has a limit point in X. This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.".
- Limit_point_compact label "Limit point compact".
- Limit_point_compact sameAs 극한점_콤팩트_공간.
- Limit_point_compact sameAs m.02pv4_r.
- Limit_point_compact sameAs Q6549451.
- Limit_point_compact sameAs Q6549451.
- Limit_point_compact sameAs Limit_point_compact.
- Limit_point_compact wasDerivedFrom Limit_point_compact?oldid=544713924.
- Limit_point_compact isPrimaryTopicOf Limit_point_compact.