Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Littlewood_subordination_theorem> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- Littlewood_subordination_theorem abstract "In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any holomorphic univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space.".
- Littlewood_subordination_theorem wikiPageID "34036143".
- Littlewood_subordination_theorem wikiPageRevisionID "474579265".
- Littlewood_subordination_theorem hasPhotoCollection Littlewood_subordination_theorem.
- Littlewood_subordination_theorem subject Category:Operator_theory.
- Littlewood_subordination_theorem subject Category:Theorems_in_complex_analysis.
- Littlewood_subordination_theorem type Abstraction100002137.
- Littlewood_subordination_theorem type Communication100033020.
- Littlewood_subordination_theorem type MathematicalTheorems.
- Littlewood_subordination_theorem type Message106598915.
- Littlewood_subordination_theorem type Proposition106750804.
- Littlewood_subordination_theorem type Statement106722453.
- Littlewood_subordination_theorem type Theorem106752293.
- Littlewood_subordination_theorem type TheoremsInComplexAnalysis.
- Littlewood_subordination_theorem comment "In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any holomorphic univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space.".
- Littlewood_subordination_theorem label "Littlewood subordination theorem".
- Littlewood_subordination_theorem sameAs m.0hr2hlx.
- Littlewood_subordination_theorem sameAs Q6653168.
- Littlewood_subordination_theorem sameAs Q6653168.
- Littlewood_subordination_theorem sameAs Littlewood_subordination_theorem.
- Littlewood_subordination_theorem wasDerivedFrom Littlewood_subordination_theorem?oldid=474579265.
- Littlewood_subordination_theorem isPrimaryTopicOf Littlewood_subordination_theorem.