Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Logarithmically_concave_function> ?p ?o. }
Showing items 1 to 13 of
13
with 100 items per page.
- Logarithmically_concave_function abstract "In convex analysis, a non-negative function f : Rn → R+ is logarithmically concave (or log-concave for short) if its domain is a convex set, and if it satisfies the inequality for all x,y ∈ dom f and 0 < θ < 1. If f is strictly positive, this is equivalent to saying that the logarithm of the function, log ∘ f, is concave; that is, for all x,y ∈ dom f and 0 < θ < 1.Examples of log-concave functions are the 0-1 indicator functions of convex sets (which requires the more flexible definition), and the Gaussian function.Similarly, a function is log-convex if satisfies the reverse inequality for all x,y ∈ dom f and 0 < θ < 1.".
- Logarithmically_concave_function wikiPageID "1508442".
- Logarithmically_concave_function wikiPageRevisionID "602592384".
- Logarithmically_concave_function hasPhotoCollection Logarithmically_concave_function.
- Logarithmically_concave_function subject Category:Convex_analysis.
- Logarithmically_concave_function subject Category:Mathematical_analysis.
- Logarithmically_concave_function comment "In convex analysis, a non-negative function f : Rn → R+ is logarithmically concave (or log-concave for short) if its domain is a convex set, and if it satisfies the inequality for all x,y ∈ dom f and 0 < θ < 1.".
- Logarithmically_concave_function label "Logarithmically concave function".
- Logarithmically_concave_function sameAs m.056sbd.
- Logarithmically_concave_function sameAs Q12351850.
- Logarithmically_concave_function sameAs Q12351850.
- Logarithmically_concave_function wasDerivedFrom Logarithmically_concave_function?oldid=602592384.
- Logarithmically_concave_function isPrimaryTopicOf Logarithmically_concave_function.