Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Malnormal_subgroup> ?p ?o. }
Showing items 1 to 18 of
18
with 100 items per page.
- Malnormal_subgroup abstract "In mathematics, in the field of group theory, a subgroup of a group is termed malnormal if for any in but not in , and intersect in the identity element.Some facts about malnormality:An intersection of malnormal subgroups is malnormal.Malnormality is transitive, that is, a malnormal subgroup of a malnormal subgroup is malnormal.The trivial subgroup and the whole group are malnormal subgroups. A normal subgroup that is also malnormal must be one of these.Every malnormal subgroup is a special type of C-group called a trivial intersection subgroup or TI subgroup.When G is finite, a malnormal subgroup H distinct from 1 and G is called a "Frobenius complement"; the set N of elements of G which are, either equal to 1, or non-conjugate to anyelement of G, is a normal subgroup of G, called the "Frobenius kernel", and G is the semi-direct product of H and N (Frobenius' theorem, see e.g. [Feit pp.133-139]).Reference:W. Feit, Characters of finite groups, Benjamin Publ., New York, 1967.".
- Malnormal_subgroup wikiPageID "3593817".
- Malnormal_subgroup wikiPageRevisionID "573754695".
- Malnormal_subgroup hasPhotoCollection Malnormal_subgroup.
- Malnormal_subgroup subject Category:Subgroup_properties.
- Malnormal_subgroup type Abstraction100002137.
- Malnormal_subgroup type Possession100032613.
- Malnormal_subgroup type Property113244109.
- Malnormal_subgroup type Relation100031921.
- Malnormal_subgroup type SubgroupProperties.
- Malnormal_subgroup comment "In mathematics, in the field of group theory, a subgroup of a group is termed malnormal if for any in but not in , and intersect in the identity element.Some facts about malnormality:An intersection of malnormal subgroups is malnormal.Malnormality is transitive, that is, a malnormal subgroup of a malnormal subgroup is malnormal.The trivial subgroup and the whole group are malnormal subgroups.".
- Malnormal_subgroup label "Malnormal subgroup".
- Malnormal_subgroup sameAs m.09nn4b.
- Malnormal_subgroup sameAs Q6744436.
- Malnormal_subgroup sameAs Q6744436.
- Malnormal_subgroup sameAs Malnormal_subgroup.
- Malnormal_subgroup wasDerivedFrom Malnormal_subgroup?oldid=573754695.
- Malnormal_subgroup isPrimaryTopicOf Malnormal_subgroup.