Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Markov_chain_Monte_Carlo> ?p ?o. }
Showing items 1 to 54 of
54
with 100 items per page.
- Markov_chain_Monte_Carlo abstract "In statistics, Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo methods) are a class of algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired distribution as its equilibrium distribution. The state of the chain after a large number of steps is then used as a sample of the desired distribution. The quality of the sample improves as a function of the number of steps.Usually it is not hard to construct a Markov chain with the desired properties. The more difficult problem is to determine how many steps are needed to converge to the stationary distribution within an acceptable error. A good chain will have rapid mixing—the stationary distribution is reached quickly starting from an arbitrary position—described further under Markov chain mixing time.Typical use of MCMC sampling can only approximate the target distribution, as there is always some residual effect of the starting position. More sophisticated MCMC-based algorithms such as coupling from the past can produce exact samples, at the cost of additional computation and an unbounded (though finite in expectation) running time.The most common application of these algorithms is numerically calculating multi-dimensional integrals. In these methods, an ensemble of "walkers" moves around randomly. At each point where the walker steps, the integrand value at that point is counted towards the integral. The walker then may make a number of tentative steps around the area, looking for a place with reasonably high contribution to the integral to move into next. Random walk methods are a kind of random simulation or Monte Carlo method. However, whereas the random samples of the integrand used in a conventional Monte Carlo integration are statistically independent, those used in MCMC are correlated. A Markov chain is constructed in such a way as to have the integrand as its equilibrium distribution. This is often easy to do.Multi-dimensional integrals often arise in Bayesian statistics, computational physics, computational biology and computational linguistics, so Markov chain Monte Carlo methods are widely used in those fields. For examples, see Gill and Robert & Casella.MCMC is also useful for generating samples that gradually populate the rare failure region in rare event sampling.".
- Markov_chain_Monte_Carlo thumbnail Metropolis_algorithm_convergence_example.png?width=300.
- Markov_chain_Monte_Carlo wikiPageExternalLink pg=824.
- Markov_chain_Monte_Carlo wikiPageExternalLink mcl.
- Markov_chain_Monte_Carlo wikiPageExternalLink pymc.
- Markov_chain_Monte_Carlo wikiPageExternalLink lecture14.mcmchistory.pdf.
- Markov_chain_Monte_Carlo wikiPageExternalLink MCMCintroPresentation.pdf.
- Markov_chain_Monte_Carlo wikiPageExternalLink S0273-0979-08-01238-X.pdf.
- Markov_chain_Monte_Carlo wikiPageExternalLink MCMCintroPresentation.pdf.
- Markov_chain_Monte_Carlo wikiPageExternalLink AndrieuFreitasDoucetJordan2003.pdf.
- Markov_chain_Monte_Carlo wikiPageExternalLink review.abstract.html.
- Markov_chain_Monte_Carlo wikiPageExternalLink MCMCexample.html.
- Markov_chain_Monte_Carlo wikiPageExternalLink classic.html.
- Markov_chain_Monte_Carlo wikiPageExternalLink monteCarloMethod.pdf.
- Markov_chain_Monte_Carlo wikiPageID "236801".
- Markov_chain_Monte_Carlo wikiPageRevisionID "605056030".
- Markov_chain_Monte_Carlo hasPhotoCollection Markov_chain_Monte_Carlo.
- Markov_chain_Monte_Carlo subject Category:Bayesian_statistics.
- Markov_chain_Monte_Carlo subject Category:Computational_statistics.
- Markov_chain_Monte_Carlo subject Category:Markov_chain_Monte_Carlo.
- Markov_chain_Monte_Carlo subject Category:Markov_models.
- Markov_chain_Monte_Carlo subject Category:Monte_Carlo_methods.
- Markov_chain_Monte_Carlo type Assistant109815790.
- Markov_chain_Monte_Carlo type CausalAgent100007347.
- Markov_chain_Monte_Carlo type LivingThing100004258.
- Markov_chain_Monte_Carlo type MarkovModels.
- Markov_chain_Monte_Carlo type Model110324560.
- Markov_chain_Monte_Carlo type Object100002684.
- Markov_chain_Monte_Carlo type Organism100004475.
- Markov_chain_Monte_Carlo type Person100007846.
- Markov_chain_Monte_Carlo type PhysicalEntity100001930.
- Markov_chain_Monte_Carlo type Whole100003553.
- Markov_chain_Monte_Carlo type Worker109632518.
- Markov_chain_Monte_Carlo type YagoLegalActor.
- Markov_chain_Monte_Carlo type YagoLegalActorGeo.
- Markov_chain_Monte_Carlo comment "In statistics, Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo methods) are a class of algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired distribution as its equilibrium distribution. The state of the chain after a large number of steps is then used as a sample of the desired distribution.".
- Markov_chain_Monte_Carlo label "Catena di Markov Monte Carlo".
- Markov_chain_Monte_Carlo label "MCMC-Verfahren".
- Markov_chain_Monte_Carlo label "Markov chain Monte Carlo".
- Markov_chain_Monte_Carlo label "Méthode de Monte-Carlo par chaînes de Markov".
- Markov_chain_Monte_Carlo label "マルコフ連鎖モンテカルロ法".
- Markov_chain_Monte_Carlo label "马尔科夫蒙特卡洛".
- Markov_chain_Monte_Carlo sameAs MCMC-Verfahren.
- Markov_chain_Monte_Carlo sameAs Méthode_de_Monte-Carlo_par_chaînes_de_Markov.
- Markov_chain_Monte_Carlo sameAs Catena_di_Markov_Monte_Carlo.
- Markov_chain_Monte_Carlo sameAs マルコフ連鎖モンテカルロ法.
- Markov_chain_Monte_Carlo sameAs 마르코프_연쇄_몬테카를로_방법.
- Markov_chain_Monte_Carlo sameAs m.01jcrc.
- Markov_chain_Monte_Carlo sameAs Q1191869.
- Markov_chain_Monte_Carlo sameAs Q1191869.
- Markov_chain_Monte_Carlo sameAs Markov_chain_Monte_Carlo.
- Markov_chain_Monte_Carlo wasDerivedFrom Markov_chain_Monte_Carlo?oldid=605056030.
- Markov_chain_Monte_Carlo depiction Metropolis_algorithm_convergence_example.png.
- Markov_chain_Monte_Carlo isPrimaryTopicOf Markov_chain_Monte_Carlo.