Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Maximal_compact_subgroup> ?p ?o. }
Showing items 1 to 22 of
22
with 100 items per page.
- Maximal_compact_subgroup abstract "In mathematics, a maximal compact subgroup K of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are not in general unique, but are unique up to conjugation – they are essentially unique.".
- Maximal_compact_subgroup wikiPageExternalLink liealgebrasandli029541mbp.
- Maximal_compact_subgroup wikiPageExternalLink fitem?id=SB_1948-1951__1__271_0.
- Maximal_compact_subgroup wikiPageExternalLink fitem?id=SSL_1954-1955__1__A24_0.
- Maximal_compact_subgroup wikiPageID "1496726".
- Maximal_compact_subgroup wikiPageRevisionID "574243464".
- Maximal_compact_subgroup hasPhotoCollection Maximal_compact_subgroup.
- Maximal_compact_subgroup subject Category:Lie_groups.
- Maximal_compact_subgroup subject Category:Topological_groups.
- Maximal_compact_subgroup type Abstraction100002137.
- Maximal_compact_subgroup type Group100031264.
- Maximal_compact_subgroup type LieGroups.
- Maximal_compact_subgroup type TopologicalGroups.
- Maximal_compact_subgroup comment "In mathematics, a maximal compact subgroup K of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are not in general unique, but are unique up to conjugation – they are essentially unique.".
- Maximal_compact_subgroup label "Maximal compact subgroup".
- Maximal_compact_subgroup label "极大紧子群".
- Maximal_compact_subgroup sameAs m.055z22.
- Maximal_compact_subgroup sameAs Q6795635.
- Maximal_compact_subgroup sameAs Q6795635.
- Maximal_compact_subgroup sameAs Maximal_compact_subgroup.
- Maximal_compact_subgroup wasDerivedFrom Maximal_compact_subgroup?oldid=574243464.
- Maximal_compact_subgroup isPrimaryTopicOf Maximal_compact_subgroup.