Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Maximal_ergodic_theorem> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Maximal_ergodic_theorem abstract "The maximal ergodic theorem is a theorem in ergodic theory, a discipline within mathematics.Suppose that is a probability space, that is a (possibly noninvertible) measure-preserving transformation, and that . Define byThen the maximal ergodic theorem states thatfor any λ ∈ R.This theorem is used to prove the point-wise ergodic theorem.".
- Maximal_ergodic_theorem wikiPageID "10050297".
- Maximal_ergodic_theorem wikiPageRevisionID "457016416".
- Maximal_ergodic_theorem hasPhotoCollection Maximal_ergodic_theorem.
- Maximal_ergodic_theorem subject Category:Ergodic_theory.
- Maximal_ergodic_theorem subject Category:Probability_theorems.
- Maximal_ergodic_theorem subject Category:Theorems_in_dynamical_systems.
- Maximal_ergodic_theorem type Abstraction100002137.
- Maximal_ergodic_theorem type Communication100033020.
- Maximal_ergodic_theorem type Message106598915.
- Maximal_ergodic_theorem type ProbabilityTheorems.
- Maximal_ergodic_theorem type Proposition106750804.
- Maximal_ergodic_theorem type Statement106722453.
- Maximal_ergodic_theorem type Theorem106752293.
- Maximal_ergodic_theorem type TheoremsInDynamicalSystems.
- Maximal_ergodic_theorem comment "The maximal ergodic theorem is a theorem in ergodic theory, a discipline within mathematics.Suppose that is a probability space, that is a (possibly noninvertible) measure-preserving transformation, and that . Define byThen the maximal ergodic theorem states thatfor any λ ∈ R.This theorem is used to prove the point-wise ergodic theorem.".
- Maximal_ergodic_theorem label "Maximal ergodic theorem".
- Maximal_ergodic_theorem sameAs m.02q0537.
- Maximal_ergodic_theorem sameAs Q6795637.
- Maximal_ergodic_theorem sameAs Q6795637.
- Maximal_ergodic_theorem sameAs Maximal_ergodic_theorem.
- Maximal_ergodic_theorem wasDerivedFrom Maximal_ergodic_theorem?oldid=457016416.
- Maximal_ergodic_theorem isPrimaryTopicOf Maximal_ergodic_theorem.