Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Milner–Rado_paradox> ?p ?o. }
Showing items 1 to 18 of
18
with 100 items per page.
- Milner–Rado_paradox abstract "In set theory, a branch of mathematics, the Milner – Rado paradox, found by Eric Charles Milner and Richard Rado (1965), states that every ordinal number α less than the successor κ+ of some cardinal number κ can be written as the union of sets X1,X2,... where Xn is of order type at most κn for n a positive integer.".
- Milner–Rado_paradox wikiPageID "25392586".
- Milner–Rado_paradox wikiPageRevisionID "579924182".
- Milner–Rado_paradox author1Link "Eric Charles Milner".
- Milner–Rado_paradox author2Link "Richard Rado".
- Milner–Rado_paradox first "Eric Charles".
- Milner–Rado_paradox first "Richard".
- Milner–Rado_paradox last "Milner".
- Milner–Rado_paradox last "Rado".
- Milner–Rado_paradox year "1965".
- Milner–Rado_paradox subject Category:Paradoxes.
- Milner–Rado_paradox subject Category:Set_theory.
- Milner–Rado_paradox comment "In set theory, a branch of mathematics, the Milner – Rado paradox, found by Eric Charles Milner and Richard Rado (1965), states that every ordinal number α less than the successor κ+ of some cardinal number κ can be written as the union of sets X1,X2,... where Xn is of order type at most κn for n a positive integer.".
- Milner–Rado_paradox label "Milner–Rado paradox".
- Milner–Rado_paradox sameAs Milner%E2%80%93Rado_paradox.
- Milner–Rado_paradox sameAs Q6860230.
- Milner–Rado_paradox sameAs Q6860230.
- Milner–Rado_paradox wasDerivedFrom Milner–Rado_paradox?oldid=579924182.