Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Mittag-Leffler_function> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Mittag-Leffler_function abstract "In mathematics, the Mittag-Leffler function Eα,β is a special function, a complex function which depends on two complex parameters α and β. It may be defined by the following series when the real part of α is strictly positive:In the case α and β are real and positive, the series converges for all values of the argument z, so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler. This class of functions are important in the theory of the fractional calculus.For α > 0, the Mittag-Leffler function Eα,1 is an entire function of order 1/α, and is in some sense the simplest entire function of its order.".
- Mittag-Leffler_function wikiPageExternalLink 0707.2582.
- Mittag-Leffler_function wikiPageExternalLink Mittag-LefflerFunction.html.
- Mittag-Leffler_function wikiPageExternalLink loadFile.do?objectId=8738&objectType=FILE.
- Mittag-Leffler_function wikiPageExternalLink S0378375810001837.
- Mittag-Leffler_function wikiPageID "1603459".
- Mittag-Leffler_function wikiPageRevisionID "576779594".
- Mittag-Leffler_function authorlink "Frank W. J. Olver".
- Mittag-Leffler_function first "F. W. J.".
- Mittag-Leffler_function first "L. C.".
- Mittag-Leffler_function hasPhotoCollection Mittag-Leffler_function.
- Mittag-Leffler_function id "10.46".
- Mittag-Leffler_function id "6594".
- Mittag-Leffler_function last "Maximon".
- Mittag-Leffler_function last "Olver".
- Mittag-Leffler_function title "Mittag-Leffler function".
- Mittag-Leffler_function subject Category:Analytic_functions.
- Mittag-Leffler_function subject Category:Special_functions.
- Mittag-Leffler_function type Abstraction100002137.
- Mittag-Leffler_function type AnalyticFunctions.
- Mittag-Leffler_function type Function113783816.
- Mittag-Leffler_function type MathematicalRelation113783581.
- Mittag-Leffler_function type Relation100031921.
- Mittag-Leffler_function type SpecialFunctions.
- Mittag-Leffler_function comment "In mathematics, the Mittag-Leffler function Eα,β is a special function, a complex function which depends on two complex parameters α and β. It may be defined by the following series when the real part of α is strictly positive:In the case α and β are real and positive, the series converges for all values of the argument z, so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler.".
- Mittag-Leffler_function label "Fonction de Mittag-Leffler".
- Mittag-Leffler_function label "Funzione di Mittag-Leffler".
- Mittag-Leffler_function label "Mittag-Leffler function".
- Mittag-Leffler_function label "Mittag-Leffler-Funktion".
- Mittag-Leffler_function label "Функция Миттаг-Леффлера".
- Mittag-Leffler_function sameAs Mittag-Leffler-Funktion.
- Mittag-Leffler_function sameAs Fonction_de_Mittag-Leffler.
- Mittag-Leffler_function sameAs Funzione_di_Mittag-Leffler.
- Mittag-Leffler_function sameAs m.05fx_c.
- Mittag-Leffler_function sameAs Q1935235.
- Mittag-Leffler_function sameAs Q1935235.
- Mittag-Leffler_function sameAs Mittag-Leffler_function.
- Mittag-Leffler_function wasDerivedFrom Mittag-Leffler_function?oldid=576779594.
- Mittag-Leffler_function isPrimaryTopicOf Mittag-Leffler_function.