Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Modus_tollens> ?p ?o. }
Showing items 1 to 50 of
50
with 100 items per page.
- Modus_tollens abstract "In propositional logic, modus tollens (or modus tollendo tollens and also denying the consequent) (Latin for "the way that denies by denying") is a valid argument form and a rule of inference.The first to explicitly state the argument form modus tollens were the Stoics.The inference rule modus tollens, also known as the law of contrapositive, validates the inference from implies and the contradictory of , to the contradictory of .The modus tollens rule can be stated formally as:where stands for "P implies Q", stands for "it is not the case that Q" (or in brief "not Q"). Then, whenever "" and "" each appear by themselves as a line of a proof, "" can validly be placed on a subsequent line. The history of the inference rule modus tollens goes back to antiquity.Modus tollens is closely related to modus ponens. There are two similar, but invalid, forms of argument: affirming the consequent and denying the antecedent.".
- Modus_tollens wikiPageExternalLink ModusTollens.html.
- Modus_tollens wikiPageID "18901".
- Modus_tollens wikiPageRevisionID "597109438".
- Modus_tollens hasPhotoCollection Modus_tollens.
- Modus_tollens subject Category:Classical_logic.
- Modus_tollens subject Category:Latin_logical_phrases.
- Modus_tollens subject Category:Rules_of_inference.
- Modus_tollens subject Category:Theorems_in_propositional_logic.
- Modus_tollens type Abstraction100002137.
- Modus_tollens type Cognition100023271.
- Modus_tollens type Communication100033020.
- Modus_tollens type Concept105835747.
- Modus_tollens type Content105809192.
- Modus_tollens type Idea105833840.
- Modus_tollens type Message106598915.
- Modus_tollens type Proposition106750804.
- Modus_tollens type PsychologicalFeature100023100.
- Modus_tollens type Rule105846054.
- Modus_tollens type RulesOfInference.
- Modus_tollens type Statement106722453.
- Modus_tollens type Theorem106752293.
- Modus_tollens type TheoremsInPropositionalLogic.
- Modus_tollens comment "In propositional logic, modus tollens (or modus tollendo tollens and also denying the consequent) (Latin for "the way that denies by denying") is a valid argument form and a rule of inference.The first to explicitly state the argument form modus tollens were the Stoics.The inference rule modus tollens, also known as the law of contrapositive, validates the inference from implies and the contradictory of , to the contradictory of .The modus tollens rule can be stated formally as:where stands for "P implies Q", stands for "it is not the case that Q" (or in brief "not Q"). ".
- Modus_tollens label "Modus tollendo tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "Modus tollens".
- Modus_tollens label "モーダストレンス".
- Modus_tollens label "否定後件".
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens sameAs Μέθοδος_διάψευσης.
- Modus_tollens sameAs Modus_tollendo_tollens.
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens sameAs モーダストレンス.
- Modus_tollens sameAs 후건_부정의_형식.
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens sameAs m.04s2j.
- Modus_tollens sameAs Q844118.
- Modus_tollens sameAs Q844118.
- Modus_tollens sameAs Modus_tollens.
- Modus_tollens wasDerivedFrom Modus_tollens?oldid=597109438.
- Modus_tollens isPrimaryTopicOf Modus_tollens.