Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Monster_group> ?p ?o. }
Showing items 1 to 52 of
52
with 100 items per page.
- Monster_group abstract "In the mathematical field of group theory, the monster group M or F1 (also known as the Fischer–Griess monster, or the Friendly Giant) is a group of finite order:It is a simple group, meaning it does not have any proper non-trivial normal subgroups (that is, the only non-trivial normal subgroup is M itself).The finite simple groups have been completely classified (see the Classification of finite simple groups). The list of finite simple groups consists of 18 countably infinite families, plus 26 sporadic groups that do not follow such a systematic pattern. The monster group is the largest of these sporadic groups and contains all but six of the other sporadic groups as subquotients. Robert Griess has called these six exceptions pariahs, and refers to the others as the happy family.".
- Monster_group wikiPageExternalLink 96.
- Monster_group wikiPageExternalLink M.
- Monster_group wikiPageExternalLink MonsterGroup.html.
- Monster_group wikiPageExternalLink ML241sub.pdf.
- Monster_group wikiPageExternalLink item?id=SB_1983-1984__26__105_0.
- Monster_group wikiPageID "47422".
- Monster_group wikiPageRevisionID "592036389".
- Monster_group authorlink "Jacques Tits".
- Monster_group authorlink "John Horton Conway".
- Monster_group authorlink "Robert Griess".
- Monster_group first "Jacques".
- Monster_group first "John".
- Monster_group first "Robert".
- Monster_group hasPhotoCollection Monster_group.
- Monster_group last "Conway".
- Monster_group last "Griess".
- Monster_group last "Tits".
- Monster_group year "1976".
- Monster_group year "1984".
- Monster_group year "1985".
- Monster_group subject Category:Moonshine_theory.
- Monster_group subject Category:Sporadic_groups.
- Monster_group type Abstraction100002137.
- Monster_group type Group100031264.
- Monster_group type SporadicGroups.
- Monster_group comment "In the mathematical field of group theory, the monster group M or F1 (also known as the Fischer–Griess monster, or the Friendly Giant) is a group of finite order:It is a simple group, meaning it does not have any proper non-trivial normal subgroups (that is, the only non-trivial normal subgroup is M itself).The finite simple groups have been completely classified (see the Classification of finite simple groups).".
- Monster_group label "Groupe Monstre".
- Monster_group label "Grupa monstrum".
- Monster_group label "Grupo monstro".
- Monster_group label "Gruppo mostro".
- Monster_group label "Monster group".
- Monster_group label "Monstergroep".
- Monster_group label "Monstergruppe".
- Monster_group label "Монстр (группа)".
- Monster_group label "زمرة الوحش".
- Monster_group label "モンスター群".
- Monster_group label "怪獸群".
- Monster_group sameAs Monstergruppe.
- Monster_group sameAs Groupe_Monstre.
- Monster_group sameAs Gruppo_mostro.
- Monster_group sameAs モンスター群.
- Monster_group sameAs 괴물_군.
- Monster_group sameAs Monstergroep.
- Monster_group sameAs Grupa_monstrum.
- Monster_group sameAs Grupo_monstro.
- Monster_group sameAs m.0crkm.
- Monster_group sameAs Q392663.
- Monster_group sameAs Q392663.
- Monster_group sameAs Monster_group.
- Monster_group wasDerivedFrom Monster_group?oldid=592036389.
- Monster_group isPrimaryTopicOf Monster_group.