Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Multinomial_distribution> ?p ?o. }
Showing items 1 to 49 of
49
with 100 items per page.
- Multinomial_distribution abstract "In probability theory, the multinomial distribution is a generalization of the binomial distribution. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories.The binomial distribution is the probability distribution of the number of successes for one of just two categories in n independent Bernoulli trials, with the same probability of success on each trial. In a multinomial distribution, the analog of the Bernoulli distribution is the categorical distribution, where each trial results in exactly one of some fixed finite number k possible outcomes, with probabilities p1, ..., pk (so that pi ≥ 0 for i = 1, ..., k and ), and there are n independent trials. Then if the random variables Xi indicate the number of times outcome number i is observed over the n trials, the vector X = (X1, ..., Xk) follows a multinomial distribution with parameters n and p, where p = (p1, ..., pk).Note that, in some fields, such as natural language processing, the categorical and multinomial distributions are conflated, and it is common to speak of a "multinomial distribution" when a categorical distribution is actually meant. This stems from the fact that it is sometimes convenient to express the outcome of a categorical distribution as a "1-of-K" vector (a vector with one element containing a 1 and all other elements containing a 0) rather than as an integer in the range in this form, a categorical distribution is equivalent to a multinomial distribution over a single observation.".
- Multinomial_distribution wikiPageID "1045553".
- Multinomial_distribution wikiPageRevisionID "604325944".
- Multinomial_distribution char "where".
- Multinomial_distribution conjugate Dirichlet_distribution.
- Multinomial_distribution hasPhotoCollection Multinomial_distribution.
- Multinomial_distribution name "Multinomial".
- Multinomial_distribution parameters "event probabilities".
- Multinomial_distribution parameters "number of trials".
- Multinomial_distribution type "mass".
- Multinomial_distribution subject Category:Discrete_distributions.
- Multinomial_distribution subject Category:Exponential_family_distributions.
- Multinomial_distribution subject Category:Factorial_and_binomial_topics.
- Multinomial_distribution subject Category:Multivariate_discrete_distributions.
- Multinomial_distribution subject Category:Probability_distributions.
- Multinomial_distribution type Abstraction100002137.
- Multinomial_distribution type Arrangement105726596.
- Multinomial_distribution type Cognition100023271.
- Multinomial_distribution type DiscreteDistributions.
- Multinomial_distribution type Distribution105729036.
- Multinomial_distribution type MultivariateDiscreteDistributions.
- Multinomial_distribution type PsychologicalFeature100023100.
- Multinomial_distribution type Structure105726345.
- Multinomial_distribution comment "In probability theory, the multinomial distribution is a generalization of the binomial distribution.".
- Multinomial_distribution label "Distribución multinomial".
- Multinomial_distribution label "Distribuição multinomial".
- Multinomial_distribution label "Distribuzione multinomiale".
- Multinomial_distribution label "Loi multinomiale".
- Multinomial_distribution label "Multinomial distribution".
- Multinomial_distribution label "Multinomiale verdeling".
- Multinomial_distribution label "Multinomialverteilung".
- Multinomial_distribution label "Мультиномиальное распределение".
- Multinomial_distribution label "多項分布".
- Multinomial_distribution sameAs Multinomické_rozdělení.
- Multinomial_distribution sameAs Multinomialverteilung.
- Multinomial_distribution sameAs Πολυωνυμική_κατανομή.
- Multinomial_distribution sameAs Distribución_multinomial.
- Multinomial_distribution sameAs Loi_multinomiale.
- Multinomial_distribution sameAs Distribuzione_multinomiale.
- Multinomial_distribution sameAs 多項分布.
- Multinomial_distribution sameAs 다항_분포.
- Multinomial_distribution sameAs Multinomiale_verdeling.
- Multinomial_distribution sameAs Distribuição_multinomial.
- Multinomial_distribution sameAs m.0416fj.
- Multinomial_distribution sameAs Q1147928.
- Multinomial_distribution sameAs Q1147928.
- Multinomial_distribution sameAs Multinomial_distribution.
- Multinomial_distribution wasDerivedFrom Multinomial_distribution?oldid=604325944.
- Multinomial_distribution isPrimaryTopicOf Multinomial_distribution.