Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Multiplicative_group_of_integers_modulo_n> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Multiplicative_group_of_integers_modulo_n abstract "In modular arithmetic the set of congruence classes relatively prime to the modulus number, say n, form a group under multiplication called the multiplicative group of integers modulo n. It is also called the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. (Units refers to elements with a multiplicative inverse.)This group is fundamental in number theory. It has found applications in cryptography, integer factorization, and primality testing. For example, by finding the order of this group, one can determine whether n is prime: n is prime if and only if the order is n − 1.".
- Multiplicative_group_of_integers_modulo_n wikiPageExternalLink MultiGrpModN.html.
- Multiplicative_group_of_integers_modulo_n wikiPageID "1195234".
- Multiplicative_group_of_integers_modulo_n wikiPageRevisionID "604737931".
- Multiplicative_group_of_integers_modulo_n hasPhotoCollection Multiplicative_group_of_integers_modulo_n.
- Multiplicative_group_of_integers_modulo_n subject Category:Finite_groups.
- Multiplicative_group_of_integers_modulo_n subject Category:Group_theory.
- Multiplicative_group_of_integers_modulo_n subject Category:Modular_arithmetic.
- Multiplicative_group_of_integers_modulo_n subject Category:Multiplication.
- Multiplicative_group_of_integers_modulo_n type Abstraction100002137.
- Multiplicative_group_of_integers_modulo_n type FiniteGroups.
- Multiplicative_group_of_integers_modulo_n type Group100031264.
- Multiplicative_group_of_integers_modulo_n comment "In modular arithmetic the set of congruence classes relatively prime to the modulus number, say n, form a group under multiplication called the multiplicative group of integers modulo n. It is also called the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. (Units refers to elements with a multiplicative inverse.)This group is fundamental in number theory.".
- Multiplicative_group_of_integers_modulo_n label "Multiplicative group of integers modulo n".
- Multiplicative_group_of_integers_modulo_n label "Prime Restklassengruppe".
- Multiplicative_group_of_integers_modulo_n label "Мультипликативная группа кольца вычетов".
- Multiplicative_group_of_integers_modulo_n label "整数模n乘法群".
- Multiplicative_group_of_integers_modulo_n sameAs Prime_Restklassengruppe.
- Multiplicative_group_of_integers_modulo_n sameAs m.04gc1b.
- Multiplicative_group_of_integers_modulo_n sameAs Q1169249.
- Multiplicative_group_of_integers_modulo_n sameAs Q1169249.
- Multiplicative_group_of_integers_modulo_n sameAs Multiplicative_group_of_integers_modulo_n.
- Multiplicative_group_of_integers_modulo_n wasDerivedFrom Multiplicative_group_of_integers_modulo_n?oldid=604737931.
- Multiplicative_group_of_integers_modulo_n isPrimaryTopicOf Multiplicative_group_of_integers_modulo_n.