Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Odlyzko–Schönhage_algorithm> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Odlyzko–Schönhage_algorithm abstract "In mathematics, the Odlyzko–Schönhage algorithm is a fast algorithm for evaluating the Riemann zeta function at many points, introduced by (Odlyzko & Schönhage 1988). The key point is the use of the fast Fourier transform to speed up the evaluation of a finite Dirichlet series of length N at O(N) equally spaced values from O(N2) to O(N1+ε) steps (at the cost of storing O(N1+ε) intermediate values). The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part T uses a finite Dirichlet series with about N = T1/2 terms, so when finding about N values of the Riemann zeta function it is sped up by a factor of about T1/2. This reduces the time to find the zeros of the zeta function with imaginary part at most T from about T3/2+ε steps to about T1+ε steps. The algorithm can be used not just for the Riemann zeta function, but also for many other functions given by Dirichlet series. The algorithm was used by Gourdon (2004) to verify the Riemann hypothesis for the first 1013 zeros of the zeta function.".
- Odlyzko–Schönhage_algorithm wikiPageID "14099326".
- Odlyzko–Schönhage_algorithm wikiPageRevisionID "572255462".
- Odlyzko–Schönhage_algorithm author1Link "Andrew Odlyzko".
- Odlyzko–Schönhage_algorithm author2Link "Arnold Schönhage".
- Odlyzko–Schönhage_algorithm last "Odlyzko".
- Odlyzko–Schönhage_algorithm last "Schönhage".
- Odlyzko–Schönhage_algorithm year "1988".
- Odlyzko–Schönhage_algorithm subject Category:Analytic_number_theory.
- Odlyzko–Schönhage_algorithm subject Category:Computational_number_theory.
- Odlyzko–Schönhage_algorithm subject Category:Zeta_and_L-functions.
- Odlyzko–Schönhage_algorithm comment "In mathematics, the Odlyzko–Schönhage algorithm is a fast algorithm for evaluating the Riemann zeta function at many points, introduced by (Odlyzko & Schönhage 1988). The key point is the use of the fast Fourier transform to speed up the evaluation of a finite Dirichlet series of length N at O(N) equally spaced values from O(N2) to O(N1+ε) steps (at the cost of storing O(N1+ε) intermediate values).".
- Odlyzko–Schönhage_algorithm label "Algoritme van Odlyzko-Schönhage".
- Odlyzko–Schönhage_algorithm label "Algoritmo de Odlyzko-Schönhage".
- Odlyzko–Schönhage_algorithm label "Odlyzko–Schönhage algorithm".
- Odlyzko–Schönhage_algorithm label "Verfahren von Odlyzko und Schönhage".
- Odlyzko–Schönhage_algorithm sameAs Odlyzko%E2%80%93Sch%C3%B6nhage_algorithm.
- Odlyzko–Schönhage_algorithm sameAs Verfahren_von_Odlyzko_und_Schönhage.
- Odlyzko–Schönhage_algorithm sameAs Algoritme_van_Odlyzko-Schönhage.
- Odlyzko–Schönhage_algorithm sameAs Algoritmo_de_Odlyzko-Schönhage.
- Odlyzko–Schönhage_algorithm sameAs Q2515396.
- Odlyzko–Schönhage_algorithm sameAs Q2515396.
- Odlyzko–Schönhage_algorithm wasDerivedFrom Odlyzko–Schönhage_algorithm?oldid=572255462.