Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Order_isomorphism> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- Order_isomorphism abstract "In the mathematical field of order theory an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that one of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections.".
- Order_isomorphism wikiPageExternalLink books?id=2esoXnolEWgC&pg=PA11&lpg=PA11.
- Order_isomorphism wikiPageExternalLink books?id=QJ_537n8zKYC&pg=PA276.
- Order_isomorphism wikiPageExternalLink books?id=tTEaMFvzhDAC&pg=PA38.
- Order_isomorphism wikiPageID "23916899".
- Order_isomorphism wikiPageRevisionID "593436771".
- Order_isomorphism hasPhotoCollection Order_isomorphism.
- Order_isomorphism subject Category:Morphisms.
- Order_isomorphism subject Category:Order_theory.
- Order_isomorphism comment "In the mathematical field of order theory an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that one of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections.".
- Order_isomorphism label "Isomorfismo d'ordine".
- Order_isomorphism label "Isomorphisme d'ensembles ordonnés".
- Order_isomorphism label "Order isomorphism".
- Order_isomorphism label "序同构".
- Order_isomorphism sameAs Isomorphisme_d'ensembles_ordonnés.
- Order_isomorphism sameAs Isomorfismo_d'ordine.
- Order_isomorphism sameAs m.01r_7c.
- Order_isomorphism sameAs Q997521.
- Order_isomorphism sameAs Q997521.
- Order_isomorphism wasDerivedFrom Order_isomorphism?oldid=593436771.
- Order_isomorphism isPrimaryTopicOf Order_isomorphism.