Matches in DBpedia 2014 for { <http://dbpedia.org/resource/P-compact_group> ?p ?o. }
Showing items 1 to 31 of
31
with 100 items per page.
- P-compact_group abstract "In mathematics, in particular algebraic topology, a p-compact group is (roughly speaking) a space that is a homotopical version of a compact Lie group, but with all the structure concentrated at a single prime p. This concept was introduced by Dwyer and Wilkerson. Subsequently the name homotopy Lie group has also been used.".
- P-compact_group wikiPageExternalLink lillenotes.pdf.
- P-compact_group wikiPageExternalLink moeller.pdf.
- P-compact_group wikiPageID "3298657".
- P-compact_group wikiPageRevisionID "537511929".
- P-compact_group hasPhotoCollection P-compact_group.
- P-compact_group subject Category:Group_theory.
- P-compact_group subject Category:Lie_groups.
- P-compact_group subject Category:Manifolds.
- P-compact_group subject Category:Symmetry.
- P-compact_group type Artifact100021939.
- P-compact_group type Conduit103089014.
- P-compact_group type Manifold103717750.
- P-compact_group type Manifolds.
- P-compact_group type Object100002684.
- P-compact_group type Passage103895293.
- P-compact_group type PhysicalEntity100001930.
- P-compact_group type Pipe103944672.
- P-compact_group type Tube104493505.
- P-compact_group type Way104564698.
- P-compact_group type Whole100003553.
- P-compact_group type YagoGeoEntity.
- P-compact_group type YagoPermanentlyLocatedEntity.
- P-compact_group comment "In mathematics, in particular algebraic topology, a p-compact group is (roughly speaking) a space that is a homotopical version of a compact Lie group, but with all the structure concentrated at a single prime p. This concept was introduced by Dwyer and Wilkerson. Subsequently the name homotopy Lie group has also been used.".
- P-compact_group label "P-compact group".
- P-compact_group sameAs m.0943g7.
- P-compact_group sameAs Q7116927.
- P-compact_group sameAs Q7116927.
- P-compact_group sameAs P-compact_group.
- P-compact_group wasDerivedFrom P-compact_group?oldid=537511929.
- P-compact_group isPrimaryTopicOf P-compact_group.